RESUMO
BACKGROUND: Age-related diminished ovarian reserve (DOR) is not absolute. Some advanced maternal age (AMA) still have normal ovarian reserve (NOR) and often show better pregnancy outcomes. Exploring the transcriptomic profile of granulosa cells (GCs) in AMA could lead to new ideas for mitigating age-related diminished ovarian reserve. AIM: This study aimed to analyze the transcriptomic profile of GCs in AMA with different ovarian reserve. RESULTS: In total, 6273 statistically significant differential expression genes (DEGs) (|log2fc|> 1, q < 0.05) were screened from the two groups, among which 3436 genes were upregulated, and 2837 genes were downregulated in the DOR group. Through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, the potential functions of dysregulated genes in AMA with DOR or NOR were predicted. The GO enrichment analysis revealed that the DEGs were mainly enriched in obsolete oxidation-reduction process, mitochondrion, metal ion binding, ATP binding, etc. The KEGG pathway enrichment analysis revealed that the above-mentioned DEGs were mainly enriched in ferroptosis, regulation of actin cytoskeleton, oxidative phosphorylation, etc. Meanwhile, verification of the mRNA expression levels of DEGs revealed the possible involvement of "ferroptosis" in age-related diminished ovarian reserve. CONCLUSIONS: From a new clinical perspective, we presented the first data showing the transcriptomic profile in GCs between AMA with different ovarian reserve. At the same time, we identified the role of ferroptosis in the GCs of AMA, providing a new biological basis for studying ovarian aging and improving pregnancy outcomes of AMA.
Assuntos
Doenças Ovarianas , Reserva Ovariana , Gravidez , Humanos , Feminino , Transcriptoma/genética , Idade Materna , Reserva Ovariana/genética , Perfilação da Expressão Gênica , Células da GranulosaRESUMO
Objective: To evaluate different starting doses of recombinant human follicle-stimulating hormone (rhFSH) on pregnancy outcomes for patients with normal ovarian reserve during gonadotropin- releasing hormone antagonist (GnRH-ant) protocol-controlled ovarian stimulation of in vitro fertilization (IVF) cycles. Methods: In this retrospective study, a total of 1138 patients undergoing IVF cycles following the GnRH-ant protocol were enrolled. Patients were divided into two groups according to the starting dose of rhFSH. 617 patients received a starting dose of rhFSH of 150 IU, and 521 patients received a starting dose of rhFSH of 225 IU. We compared demographic characteristics, ovarian stimulation and embryological characteristics, and pregnancy and birth outcomes between the two groups. Multivariate logistic regression analysis was performed to examine the possible effects of the known potential confounding factors on pregnancy outcomes. Results: The number of oocytes retrieved in the 150 IU rhFSH group was significantly lower than those in the 225 IU rhFSH group. There was no significant difference between the two groups referring to embryological characteristics. The proportion of fresh embryo transfer in the 150 IU rhFSH group was significantly higher than that in the 225 IU rhFSH group (48.30% vs. 40.90%), and there was no difference in the risk of ovarian hyperstimulation syndrome and pregnancy outcomes between the two groups. Conclusions: In conclusion, the starting dose of rhFSH of 150 IU for ovarian stimulation has a similar pregnancy outcome as starting dose of rhFSH of 225 IU in GnRH-ant protocol for patients with normal ovarian reserve. Considering the potential cost-effectiveness and shorter time to live birth, the starting dose of rhFSH of 150 IU may be more suitable than 225 IU.
Assuntos
Hormônio Foliculoestimulante , Reserva Ovariana , Feminino , Gravidez , Humanos , Hormônio Liberador de Gonadotropina , Estudos Retrospectivos , Hormônio Foliculoestimulante Humano , Antagonistas de HormôniosRESUMO
PREMISE OF THE STUDY: Stipa breviflora (Poaceae) is one of the dominant species of the desert steppe in the eastern Eurasian grasslands. Simple sequence repeat (SSR) markers were developed for use in genetic diversity studies of this species. METHODS AND RESULTS: A total of 1954 potentially polymorphic loci were obtained by comparing transcriptome data of eight different S. breviflora individuals. We selected 81 loci to verify polymorphism and 63 loci amplified, of which 21 loci exhibited polymorphism. The number of alleles per locus varied from two to 24, the observed heterozygosity ranged from 0.083 to 0.958, and the expected heterozygosity ranged from 0.396 to 0.738. CONCLUSIONS: These newly identified SSR loci can be used for population genetic and landscape genetic studies of S. breviflora. In addition, 14 loci also amplified in six related Stipa species (S. grandis, S. krylovii, S. bungeana, S. aliena, S. gobica, and S. purpurea).
RESUMO
DNA label-retention, or retention of a thymidine analog, is a characteristic of slow cycling cells and has been used to identify stem cells in several organ systems. Recent findings have demonstrated inconsistent localization of label-retaining cells (LRCs) in the kidney. Differences in the dose and timing of administration of deoxyuridine, the length of the chase period, and the species of animal used have made understanding the distinctions between these findings difficult. In the present studies, we utilized a dual loading scheme in the same animal to demonstrate that the cells labeled at different ages identified independent populations of LRC that distributed globally in an anti-parallel manner in the kidney. Loading with a DNA label in neonates identified LRC more often in the papilla, while administering the DNA label in adult mice identified LRC prominently in the cortex and the outer medulla. Furthermore, the tissue compartment distribution (epithelial-endothelial-interstitial) as well as the specific distribution within the nephron epithelia differed for these populations. These findings highlighted the complexity of the dynamics of cell proliferation in the kidney throughout the postnatal and adult period and call attention to the confusion associated with the term "label-retaining cells" for different timings of the loading and chase periods. This study indicated that the results of previous studies should be viewed as nonoverlapping and that further studies are needed to ascertain the role of each of these populations in the steady-state maintenance and injury recovery of the kidney.
Assuntos
Rim/metabolismo , Animais , Antimetabólitos/metabolismo , Ciclo Celular/fisiologia , Desoxiuridina/metabolismo , Endotélio/citologia , Endotélio/metabolismo , Epitélio/metabolismo , Rim/citologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Néfrons/citologia , Néfrons/metabolismo , Células-TroncoRESUMO
Renal failure, a major complication associated with multiple myeloma, is usually related to deposition of monoclonal immunoglobulin free light chains (FLCs) and directly contributes to morbidity and mortality in this disease. The present study focused on the cytotoxic effects of monoclonal FLCs. Human proximal tubular epithelial cells (HK-2) were examined after incubation with two human monoclonal FLCs (termed κ2 and λ3). Incubation of HK-2 cells for 24 and 48 hours with either FLCs at 1 mg/mL promoted activation of caspase-9 and caspase-3 and increased the rate of apoptosis. Because prior studies demonstrated that FLCs generated intracellular oxidative stress, our studies focused on the redox-sensitive mitogen-activated protein kinase kinase kinase known as apoptosis signal-regulating kinase 1 (ASK1). A time-dependent increase in phosphorylation of ASK1 at T845, indicating activation of this enzyme, was observed. Small interfering RNA designed to reduce ASK1 expression in HK-2 cells successfully decreased ASK1, which was confirmed by Western blot analysis. Incubation of ASK1-depleted HK-2 cells with the two FLCs prevented the increase in apoptosis while pretreating HK-2 cell with nontargeting small interfering RNA did not prevent FLCs-mediated apoptosis. The combined data demonstrate that monoclonal FLCs activated the intrinsic apoptotic pathway in renal epithelial cells by activation of ASK1.
Assuntos
Apoptose/fisiologia , Cadeias Leves de Imunoglobulina/fisiologia , Túbulos Renais Proximais/metabolismo , MAP Quinase Quinase Quinase 5/fisiologia , Western Blotting , Caspase 3/metabolismo , Caspase 9/metabolismo , Células Epiteliais/metabolismo , Humanos , Falência Renal Crônica/etiologia , Falência Renal Crônica/metabolismo , Falência Renal Crônica/patologia , Túbulos Renais Proximais/patologia , Mieloma Múltiplo/complicações , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Proteinúria/metabolismo , RNA Interferente Pequeno/fisiologiaRESUMO
One of the major attendant complications of multiple myeloma is renal injury, which contributes significantly to morbidity and mortality in this disease. Monoclonal immunoglobulin free light chains (FLCs) are usually directly involved, and tubulointerstitial renal injury and fibrosis are prominent histologic features observed in myeloma. The present study examined the role of monoclonal FLCs in altering the nuclear factor κ light chain enhancer of activated B cells (NF-κB) activity of renal epithelial cells. Human proximal tubule epithelial cells exposed to 3 different human monoclonal FLCs demonstrated Src kinase-dependent activation of the NF-κB pathway, which increased production of monocyte chemoattractant protein-1 (MCP-1). Tyrosine phosphorylation of inhibitor of κB kinases (IKKs) IKKα and IKKß and a concomitant increase in inhibitor of κB (IκB) kinase activity in cell lysates were observed. Time-dependent, Src kinase-dependent increases in serine and tyrosine phosphorylation of IκBα and NF-κB activity were also demonstrated. Proteasome inhibition partially blocked FLC-induced MCP-1 production. These findings fit into a paradigm characterized by FLC-induced redox-signaling events that activated the canonical and atypical (IKK-independent) NF-κB pathways to promote a proinflammatory, profibrotic renal environment.
Assuntos
Células Epiteliais/efeitos dos fármacos , Cadeias Leves de Imunoglobulina/farmacologia , Rim/efeitos dos fármacos , NF-kappa B/metabolismo , Quinases da Família src/fisiologia , Antineoplásicos/farmacologia , Ácidos Borônicos/farmacologia , Bortezomib , Células Cultivadas , Quimiocina CCL2/metabolismo , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Células Epiteliais/metabolismo , Humanos , Quinase I-kappa B/metabolismo , Cadeias Leves de Imunoglobulina/fisiologia , Rim/metabolismo , Fosforilação/efeitos dos fármacos , Pirazinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Tirosina/metabolismo , Quinases da Família src/metabolismoRESUMO
The renal proximal tubule metabolizes circulating low-molecular-weight proteins such as Ig free light chains. In the setting of plasma cell dyscrasias, the burden of filtered protein can be very high. Endocytosis of certain nephrotoxic light chains induces H(2)O(2) production and monocyte chemoattractant protein-1 (MCP-1) release, leading to recruitment of inflammatory cells and interstitial fibrosis, but how these processes are linked mechanistically is not well understood. This study investigated the relationship between H(2)O(2) generated after light chain endocytosis by human proximal tubular (HK-2) cells and activation of c-Src, a redox-sensitive tyrosine kinase. HK-2 cells exposed to two different light chains upregulated c-Src activity, which increased the production of MCP-1. In parallel, we observed a time-dependent oxidation of c-Src. Inhibition of c-Src activity and silencing c-Src expression abrogated the light chain-induced MCP-1 response, but had no effect on H(2)O(2), indicating that production of H(2)O(2) is upstream of c-Src in the signaling cascade. Silencing megalin and cubilin expression inhibited the MCP-1 response, whereas extracellular catalase did not, indicating that endocytosis is required and that intracellular generation of reactive oxygen species activates c-Src. These data show that intracellular H(2)O(2) induced by endocytosis of monoclonal free light chains oxidizes and activates c-Src, which promotes release of MCP-1.
Assuntos
Endocitose/fisiologia , Células Epiteliais/fisiologia , Cadeias Leves de Imunoglobulina/fisiologia , Túbulos Renais Proximais/fisiologia , Transdução de Sinais/fisiologia , Albuminas/metabolismo , Proteína Tirosina Quinase CSK , Células Cultivadas , Quimiocina CCL2/metabolismo , Células Epiteliais/citologia , Técnicas de Silenciamento de Genes , Humanos , Peróxido de Hidrogênio/metabolismo , Interleucina-6/metabolismo , Túbulos Renais Proximais/citologia , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Oxirredução , Proteínas Tirosina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Quinases da Família srcRESUMO
Human and animal studies demonstrate an untoward effect of excess dietary NaCl (salt) intake on cardiovascular function and life span. The endothelium in particular augments the production of transforming growth factor (TGF)-beta, a fibrogenic growth factor, in response to excess dietary salt intake. This study explored the initiating mechanism that regulates salt-induced endothelial cell production of TGF-beta. Male Sprague-Dawley rats were given diets containing different amounts of NaCl and potassium for 4 days. A bioassay for TGF-beta demonstrated increased (35.2%) amounts of active TGF-beta in the medium of aortic ring segments from rats on the high-salt diet compared with rats maintained on a 0.3% NaCl diet. Inhibition of the large-conductance, calcium-activated potassium channel inhibited dietary salt-induced vascular production of TGF-beta but did not affect production of TGF-beta by ring segments from rats on the low-salt diet. Immunohistochemical and Western analyses demonstrated the alpha subunit of the calcium-activated potassium channel in endothelial cells. Increasing medium [K+] inhibited production of dietary salt-induced vascular production levels of total and active TGF-beta but did not alter TGF-beta production by aortic rings from rats on the 0.3% NaCl diet. Increasing dietary potassium content decreased urinary active TGF-beta in animals receiving the high-salt diet but did not change urinary active TGF-beta in animals receiving the low-salt diet. The findings demonstrated an interesting interaction between the dietary intake of potassium and excess NaCl and further showed the fundamental role of the endothelial calcium-activated potassium channel in the vascular response to excess salt intake.
Assuntos
Potássio/farmacologia , Cloreto de Sódio na Dieta/farmacologia , Fator de Crescimento Transformador beta/biossíntese , Animais , Western Blotting , Modelos Animais de Doenças , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Hipertensão/metabolismo , Hipertensão/patologia , Imuno-Histoquímica , Masculino , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Probabilidade , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Sensibilidade e Especificidade , Cloreto de Sódio na Dieta/metabolismo , Fator de Crescimento Transformador beta/efeitos dos fármacosRESUMO
As low molecular weight proteins, restriction from glomerular filtration is minimized, permitting significant amounts of Ig light chains to be endocytosed into the proximal tubule epithelium, particularly in plasma cell dyscrasias. Recent studies have shown that this effect of concentrating light chains within the proximal tubule alters cell function. This study demonstrated that light chains belonged to a class of proteins that are capable of catalyzing the formation of hydrogen peroxide. Sufficient amounts of hydrogen peroxide were produced in HK-2 cells to stimulate the production of monocyte chemoattractant protein-1 (MCP-1), a key chemokine involved in monocyte/macrophage migration and activation of the proximal tubule, and to increase lactate dehydrogenase release into the medium. The light chain-mediated effect on MCP-1 production was inhibited by co-incubation with 1,3-dimethyl-2-thiourea, which also inhibited lactate dehydrogenase release, and by pyrrolidine dithiocarbamate, an inhibitor of NF-kappaB. The amount of light chain that stimulated an intracellular redox-signaling pathway in the proximal tubule cells was well within levels that are seen in patients who have plasma cell dyscrasias. The conclusion is that light chains possess a unique property that permits the development of intracellular oxidative stress that in turn promotes activation of the proximal tubule and elaboration of MCP-1.
Assuntos
Peróxido de Hidrogênio/metabolismo , Cadeias Leves de Imunoglobulina/farmacologia , Estresse Oxidativo , Catálise , Células Cultivadas , Quimiocina CCL2/biossíntese , Humanos , Rim/metabolismo , L-Lactato Desidrogenase/metabolismo , Tioureia/análogos & derivados , Tioureia/farmacologiaRESUMO
The Dahl/Rapp salt-sensitive (S) rat is a model of salt-sensitive hypertension and hypertensive renal disease. This study explored the role of vascular remodeling in the development of renal failure in S rats. Groups of S and Sprague-Dawley rats were given 0.3 and 8.0% NaCl diets for up to 21 days and evidence of smooth muscle proliferation identified using immunohistochemistry that showed nuclear accumulation of proliferating cell nuclear antigen and 5-bromo-2'-deoxy-uridine. Compared with the other three groups, S rats on 8.0% NaCl diet showed increased nuclear labeling of cells of the aorta and arteries and arterioles of the kidney by the end of the first week of study. Progressive luminal narrowing of the interlobular arteries and preglomerular arterioles occurred in S rats over the 3 wk on the 8.0% NaCl diet. Accumulation of pimonidazole adducts and nuclear accumulation of hypoxia-inducible factor-1alpha (HIF-1alpha) were used as markers of tissue hypoxia. By the end of the second week of study, pimonidazole levels increased in S rats on 8.0% NaCl diet and deposition was apparent in tubular cells in the cortex and medulla. At the completion of the experiment, HIF-1alpha levels were increased in nuclear extracts from the cortex and medulla of S rats on this diet, compared with the other three groups of rats. The data demonstrated a disorder of the vascular remodeling process with proliferation of vascular smooth muscle cells temporally followed by development of tissue hypoxia in the hypertensive nephropathy of S rats on 8.0% NaCl diet.
Assuntos
Hipertensão/fisiopatologia , Músculo Liso Vascular/fisiopatologia , Insuficiência Renal/fisiopatologia , Animais , Bromodesoxiuridina , Hipóxia Celular/fisiologia , Proliferação de Células , Hipertensão/complicações , Hipertensão/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia , Rim/irrigação sanguínea , Rim/patologia , Masculino , Músculo Liso Vascular/patologia , Nitroimidazóis , Ratos , Ratos Endogâmicos Dahl , Insuficiência Renal/etiologia , Insuficiência Renal/patologia , Cloreto de Sódio , Sacarose , Fatores de Tempo , Fatores de Transcrição/metabolismoRESUMO
BACKGROUND: Hypertensive nephrosclerosis is the second most common cause of end-stage renal failure in the United States. The mechanism by which hypertension produces renal failure is incompletely understood. Recent evidence demonstrated that an unscheduled and inappropriate increase in apoptosis occurred in the Dahl/Rapp rat, an inbred strain of rat that uniformly develops hypertension and hypertensive nephrosclerosis; early correction of the hypertension prevents the renal injury. The present study examined the role of the Fas/FasL pathway in this process. METHODS: Young male Dahl/Rapp salt-sensitive (S) and Sprague-Dawley rats were fed diets that contained 0.3% or 8.0% NaCl diets. Kidneys were examined at days 7 and 21 of the study. RESULTS: An increase in Fas and FasL expression was observed in glomerular and tubular compartments of kidneys of hypertensive S rats, whereas dietary salt did not change expression of either of these molecules in normotensive Sprague-Dawley rats. Associated with this increase was cleavage of Bid and activation of caspase-8, the initiator caspase in this apoptotic pathway, by day 21 of the study. CONCLUSIONS: Augmented expression of apoptotic signaling by the Fas/FasL pathway occurred during development of end-stage renal failure in this model of hypertensive nephrosclerosis.