Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 675
Filtrar
1.
J Colloid Interface Sci ; 679(Pt A): 694-704, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39388955

RESUMO

Na3V2(PO4)3 (NVP) is one of the most promising cathode materials for sodium-ion batteries (SIBs) due to its robust three-dimensional framework, high tunability, and relatively high Na+ intercalation potentials. However, its utility is generally constrained by low conductivity, inefficient charge transfer, and subpar interface kinetics. This work presents an efficient and simple method to address these issues. We innovatively modified the NVP surface with Pr6O11 nanoparticles, a negative temperature coefficient (NTC) thermosensitive material, to enhance interface compatibility with electrolytes and improve conductivity. This modification significantly enhances the overall sodium-ion storage performance. Specifically, the optimized NVP-2 %Pr6O11 electrode exhibits excellent electrochemical properties with the aid of an optimized conductivity network compared to the unmodified NVP. Cycled at an 8C current density, the NVP-2 %Pr6O11 electrode achieves high specific capacities of 102.6 mAh·g-1 at 27 °C and 95.6 mAh·g-1 at 45 °C. After 1000 cycles, the capacity retention rates are 81.18 % and 78.97 %, respectively, significantly higher than the 20.59 % and 14.99 % of pure NVP. In coin full-battery testing, the NVP-2 %Pr6O11 electrode retains 89.76 % capacity after 500 cycles at 8C. In addition, the assembled The NVP-2 %Pr6O11//HC pouch full battery exhibits better sodium-ion storage and thermal safety performance compared to the NVP-SP//HC battery. This simple modification strategy provides an effective insight into the application of NVP electrodes in energy storage.

2.
Bioresour Technol ; : 131615, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39395603

RESUMO

Magnesium ion (Mg2+) plays an important role in the accumulation and stability of anaerobic ammonium-oxidizing bacteria (AnAOB). In this study, the response of anammox sludge to Mg2+ was comprehensively investigated by performance evaluation and metagenomics analysis. Appropriate Mg2+ (0.8 mmol/L) could improve the nitrogen removal performance, AnAOB activity, and the synthesis potential of some hydrophobic substances, while high Mg2+ (>1.6 mmol/L) has a negative effect. Meanwhile, Mg2+ transmembrane transport theory was introduced to reveal the response principle of AnAOB to Mg2+ from a novel insight. AnAOB may have a self-defense function based on the PhoQ/PhoP-MgtAB system. Low extracellular Mg2+ will activate this function to enhance Mg2+ influx, thereby improving the intracellular metabolism of AnAOB. Excessive Mg2+, however, dormant this function and induces Mg2+ efflux, which may decrease the intracellular Mg2+ and thus affect AnAOB metabolism. These findings provide valuable references for the Mg2+ regulation of anammox-based process.

3.
Commun Biol ; 7(1): 1256, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39363033

RESUMO

Genetic biocontrol technologies present promising and eco-friendly strategies for the management of pest and insect-transmitted diseases. Although considerable advancements achieve in gene drive applications targeting mosquitoes, endeavors to combat agricultural pests have been somewhat restricted. Here, we identify that the testis-specific serine/threonine kinases (TSSKs) family is uniquely expressed in the testes of Cydia pomonella, a prominent global invasive species. We further generated male moths with disrupted the expression of TSSKs and those with TSSKs disrupted using RNA interference and CRISPR/Cas9 genetic editing techniques, resulting in significant disruptions in spermiogenesis, decreased sperm motility, and hindered development of eggs. Further explorations into the underlying post-transcriptional regulatory mechanisms reveales the involvement of lnc117962 as a competing endogenous RNA (ceRNA) for miR-3960, thereby regulating TSSKs. Notably, orchard trials demonstrates that the release of male strains can effectively suppress population growth. Our findings indicate that targeting TSSKs could serve as a feasible avenue for managing C. pomonella populations, offering significant insights and potential strategies for controlling invasive pests through genetic sterile insect technique (gSIT) technology.


Assuntos
Infertilidade Masculina , Mariposas , Proteínas Serina-Treonina Quinases , Testículo , Masculino , Animais , Mariposas/genética , Infertilidade Masculina/genética , Testículo/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Espécies Introduzidas , Mutação com Perda de Função , Espermatogênese/genética , Sistemas CRISPR-Cas
4.
Addict Behav ; 160: 108184, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39393293

RESUMO

BACKGROUND/OBJECTIVE: This study examines the interplay between problematic internet gaming (PIG) and depressive symptoms among university students, specifically anhedonia and depressed mood. Prior studies lacked distinction between these symptoms and had limited follow-ups. METHOD: The three-wave longitudinal study analyzed data from 1,720 university students (with an average age of 20 years and 49 % being female) using a random intercept cross-lagged panel model, which distinguished between-person and within-person effects. RESULTS: At the between-person level, PIG was positively associated with two depressive symptoms. At the within-person level, PIG positively predicted future anhedonia. Besides, depressed mood positively predicted future PIG. CONCLUSIONS: Our results have identified PIG as a risk factor for anhedonia and depressed mood as a risk factor for PIG among university students.

5.
J Orthop Surg Res ; 19(1): 665, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39415206

RESUMO

PURPOSE: The study's objective was to assess the effect of the screw insertion depth into fractured vertebrae in treating thoracolumbar fractures. MATERIALS AND METHODS: This was a retrospective analysis of 92 patients with thoracolumbar fractures from December 2018 to February 2020. Patients had AO type A2, A3 thoracolumbar fractures. The patients were divided into two groups according to the screw insertion depth. The vertebral wedge angle (VWA), Cobb angle (CA), anterior vertebral body height (AVBH), middle vertebral body height (MVBH), visual analog scale (VAS) score, and Oswestry Disability Index (ODI) were compared preoperatively and at one week and 12 months postoperatively. The correlation between Vertebral height loss and potential risk factors, such as sex, age, BMD and BMI was evaluated. RESULTS: Compared with the preoperative data, the postoperative clinical and radiographic findings were significantly different in both groups, But no significant difference between the two groups at 1 week. At 1 year postoperatively, there was a significant difference in the CA (p < 0.0001), VWA (p = 0.047), AVBH (p < 0.0001), MVBH (p < 0.0001), VAS score (p < 0.0001), and ODI (p < 0.0001) between the two groups, Except for age, bone density and other influencing factors the long screw group had better treatment results than the short screw group. CONCLUSION: A longer screw provides greater grip on the fractured vertebral body and stronger support to the vertebral plate. The optimal screw placement depth exceeds 60% of the vertebral body length on the lateral view.


Assuntos
Parafusos Ósseos , Vértebras Lombares , Fraturas da Coluna Vertebral , Vértebras Torácicas , Humanos , Fraturas da Coluna Vertebral/cirurgia , Fraturas da Coluna Vertebral/diagnóstico por imagem , Vértebras Torácicas/cirurgia , Vértebras Torácicas/lesões , Vértebras Torácicas/diagnóstico por imagem , Masculino , Feminino , Vértebras Lombares/cirurgia , Vértebras Lombares/lesões , Vértebras Lombares/diagnóstico por imagem , Estudos Retrospectivos , Pessoa de Meia-Idade , Adulto , Fixação Interna de Fraturas/métodos , Resultado do Tratamento , Idoso
6.
Small Methods ; : e2400770, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39420828

RESUMO

This study reveals a local strain-dependent etching behavior that enables the formation of distinguished etching patterns in differently strained chemical vapor deposited (CVD) 2D molybdenum disulfide (MoS2) monolayers. It is demonstrated that when the local tensile strain of CVD 2D MoS2 is as uniformly low as ɛ ≈ 0.33% or less, the oxidative etching pattern possesses conventional triangular etching pits (TEPs), while when the local tensile strain is as uniformly high as ɛ ≈ 0.55% or larger, the oxidative etching pattern consist of uniformly oriented hexagonal etching channels (HECs). More interestingly, when the CVD 2D MoS2 monolayer has heterogenous strain distribution from ɛ ≈ 0.55% (center region) to ɛ ≈ 0.33% (perimeter region), the oxidative etching pattern comprise of non-uniformly hexagonal-mixed-parallel etching channels (HPECs). The further characterization and analysis reveal the formation mechanism of such strain-dependent etching patterns is built on the local strain-related fractures propagation under oxidative etching, as well as the anisotropy fractures-based oxidative etching kinetics. This study may enhance the understanding of the relationship between etching and growth features of 2D TMDs, and paves the way to etching-nanostructured (or defect) engineering of 2D TMDs and other 2D materials for potential applications in electrocatalysis and optoelectronics.

7.
Cancer Cell Int ; 24(1): 306, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227913

RESUMO

Clinical trials and studies have implicated that E3 ubiquitin ligase BTBD3 (BTB Domain Containing 3) is a cancer-associated gene. However, the role and underlying mechanism of BTBD3 in colorectal cancer (CRC) is not fully understood yet. Herein, our study demonstrated that the mRNA and protein levels of BTBD3 were decreased in CRC tissues and associated with TYPO3 and Wnt/ß-catenin pathway. Our results showed that circRAE1 knockdown and TYRO3 overexpression activated Wnt/ß-catenin signaling pathway and the EMT process-associated markers, indicating that circRAE1/miR-388-3p/TYRO3 axis exacerbated tumorigenesis of CRC by activating Wnt/ß-catenin signaling pathway. In addition, overexpression of BTBD3 reduced CRC cell migration and invasion in vitro and inhibited tumor growth in vivo. Our data demonstrated that BTBD3 suppressed CRC progression through negative regulation of the circRAE1/miR-388-3p/TYRO3 axis and the Wnt/ß-catenin pathway. Our data further confirmed that BTBD3 bound and ubiquitinated ß-catenin and led to ß-catenin degradation, therefore blocked the Wnt/ß-catenin pathway and suppressed the CRC tumorigenesis. This study explored the mechanism of BTBD3 involved in CRC tumorigenesis and provided a new theoretical basis for the prevention and treatment of CRC.

8.
Front Oncol ; 14: 1387611, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39234394

RESUMO

Background: Carcinosarcoma is a rare esophageal tumor, accounting for approximately 0.27-2.8% of malignant esophageal tumors. This study aims to investigate the clinical pathological characteristics, surgical treatment outcomes, and analysis of prognostic factors in esophageal carcinosarcoma (ECS). Methods: Clinical data from sixteen patients diagnosed with esophageal sarcomatoid carcinoma who underwent surgical interventions were retrospectively analyzed. Clinical and pathological features, treatment modalities, and postoperative outcomes were systematically examined. Results: Out of the 1261 patients who underwent surgical treatment for esophageal cancer, 16 cases were pathologically confirmed as carcinosarcoma. Among them, two underwent neoadjuvant chemotherapy, six received postoperative chemotherapy. Carcinosarcomas predominantly occurred in the middle (43.75%) and lower (50%) segments of the esophagus. Among the 16 cases, 10 presented as polypoid, 4 as ulcerative, and 2 as medullary types. Microscopic examination revealed coexistence and transitional transitions between sarcomatous and carcinoma components. Pathological staging showed 5 cases in stage T1, 2 in stage T2, and 9 in stage T3, with lymph node metastasis observed in 8 cases (50%). TNM staging revealed 2 cases in stage I, 9 in stage II, and 5 in stage III. The overall 1, 3, and 5-year survival rates were 86.67%, 62.5%, and 57.14%, respectively. Univariate analysis indicated that pathological N staging influenced survival rates, while multivariate analysis demonstrated that pathological N staging was an independent prognostic factor. Conclusions: Carcinosarcoma is a rare esophageal tumor, accounting for approximately 0.27-2.8% of malignant esophageal tumors. Histologically, the biphasic pattern is a crucial diagnostic feature, although the carcinomatous component may not always be evident, especially in limited biopsies, leading to potential misclassification as pure sarcoma or squamous cell carcinoma. Despite its large volume and cellular atypia, carcinosarcoma carries a favorable prognosis. Complete surgical resection of the tumor and regional lymph node dissection is the preferred treatment approach for esophageal carcinosarcoma.

9.
Nat Plants ; 10(9): 1330-1342, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-39294263

RESUMO

SUMOylation-the attachment of a small ubiquitin-like modifier (SUMO) to target proteins-plays roles in controlling plant growth, nutrient signalling and stress responses. SUMOylation studies in plants are scarce because identifying SUMOylated proteins and their sites is challenging. To date, only around 80 SUMOylation sites have been identified. Here we introduce lysine-null SUMO1 into the Arabidopsis sumo1 sumo2 mutant and establish a two-step lysine-null SUMO enrichment method. We identified a site-specific SUMOylome comprising over 2,200 SUMOylation sites from 1,300 putative acceptors that function in numerous nuclear processes. SUMOylation marks occur on several motifs, differing from the canonical ψKxE motif in distant eukaryotes. Quantitative comparisons demonstrate that SUMOylation predominantly enhances the stability of SUMO1 acceptors. Our study delivers a highly sensitive and efficient method for site-specific SUMOylome studies and provides a comprehensive catalogue of Arabidopsis SUMOylation, serving as a valuable resource with which to further explore how SUMOylation regulates protein function.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteômica , Sumoilação , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteômica/métodos , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética
10.
Adv Biol (Weinh) ; : e2400293, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39334517

RESUMO

Fusobacterium nucleatum (Fn) is significantly associated with poor prognosis in colorectal carcinoma (CRC), however, mechanisms of Fn in DNA mismatch repair (MMR) and microsatellite instability (MSI) in CRC have not been fully elucidated. Clinical samples are collected to analyze the relationship between Fn abundance and microsatellite stability. Tumor cells are treated with Fn to detect the expression of proteins related to toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (Myd88), mutS homolog 6 (MSH6), and nuclear factor-κB (NF-κB) signaling pathways, respectively. Combined with the prediction results from TargetScan, the regulatory role of microRNA upstream of MSH6 is demonstrated. The effect of this regulatory axis on CRC development is demonstrated using a nude mouse tumor model. Compared with microsatellite stability (MSS)-type CRC patients, MSI-type showed higher Fn abundance. Fn treatment of CRC cells activated TLR4/Myd88/NF-κB signaling pathway, transcriptionally activating miRNA-155-5p expression, thereby negatively regulating MSH6. Fn treatment accelerated the malignant progression of CRC in mice, and this process is inhibited by miRNA-155-5p antagomir. Fn in CRC upregulated miRNA-155-5p by activating TLR4/NF-κB signaling to inhibit MSH6, and this regulatory pathway may affect MSS of cancer cells.

11.
Nat Commun ; 15(1): 8221, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300135

RESUMO

The main vectors of Zika virus (ZIKV) and dengue virus (DENV) are Aedes aegypti and Ae. albopictus, with Ae. aegypti being more competent. However, the underlying mechanisms remain unclear. Here, we find Ae. albopictus shows comparable vector competence to ZIKV/DENV with Ae. aegypti by blood-feeding after antibiotic treatment or intrathoracic injection. This suggests that midgut microbiota can influence vector competence. Enterobacter hormaechei_B17 (Eh_B17) is isolated from field-collected Ae. albopictus and conferred resistance to ZIKV/DENV infection in Ae. aegypti after gut-transplantation. Sphingosine, a metabolite secreted by Eh_B17, effectively suppresses ZIKV infection in both Ae. aegypti and cell cultures by blocking viral entry during the fusion step, with an IC50 of approximately 10 µM. A field survey reveals that Eh_B17 preferentially colonizes Ae. albopictus compared to Ae. aegypti. And field Ae. albopictus positive for Eh_B17 are more resistant to ZIKV infection. These findings underscore the potential of gut symbiotic bacteria, such as Eh_B17, to modulate the arbovirus vector competence of Aedes mosquitoes. As a natural antiviral agent, Eh_B17 holds promise as a potential candidate for blocking ZIKV/DENV transmission.


Assuntos
Aedes , Vírus da Dengue , Enterobacter , Microbioma Gastrointestinal , Mosquitos Vetores , Esfingosina , Simbiose , Zika virus , Aedes/virologia , Aedes/microbiologia , Aedes/efeitos dos fármacos , Animais , Mosquitos Vetores/microbiologia , Mosquitos Vetores/virologia , Mosquitos Vetores/efeitos dos fármacos , Zika virus/fisiologia , Zika virus/efeitos dos fármacos , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/fisiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Esfingosina/farmacologia , Enterobacter/efeitos dos fármacos , Enterobacter/fisiologia , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia , Dengue/transmissão , Dengue/virologia , Dengue/prevenção & controle , Feminino , Internalização do Vírus/efeitos dos fármacos , Humanos
12.
Ecol Evol ; 14(9): e70277, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39301297

RESUMO

Pine wilt disease (PWD) is a devastating plant disease caused by the pinewood nematode (PWN, Bursaphelenchus xylophilus) that is transmitted by several beetle species in the genus, Monochamus. Once present, the disease is difficult to control. Prevention rather than control is regarded as an effective strategy for PWD management. Central to this prevention strategy is the ability to predict the potential distribution of the disease. Here, we employed an integrated MaxEnt and CLIMEX approach to model the potential distribution of PWD under various climate-change scenarios. Our results indicate that rising temperatures and lower humidity under climate change will render some of the northern regions of China more suitable for the nematode and these beetles, causing the gradual northward movement of PWD. Furthermore, suitable habitats for three pine species, Pinus massoniana, P. taiwanensis and P. shurbergia, overlap with PWN and Monochamus, suggesting that these three species are potentially at high risk of PWD. Thus, PWD management should target the northern regions of China and the three pine species that are most susceptible to PWD.

13.
Sensors (Basel) ; 24(16)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39204820

RESUMO

Due to their high accuracy, excellent stability, minor size, and low cost, silicon piezoresistive pressure sensors are used to monitor downhole pressure under high-temperature, high-pressure conditions. However, due to silicon's temperature sensitivity, high and very varied downhole temperatures cause a significant bias in pressure measurement by the pressure sensor. The temperature coefficients differ from manufacturer to manufacturer and even vary from batch to batch within the same manufacturer. To ensure high accuracy and long-term stability for downhole pressure monitoring at high temperatures, this study proposes a temperature compensation method based on bilinear interpolation for piezoresistive pressure sensors under downhole high-temperature and high-pressure environments. A number of calibrations were performed with high-temperature co-calibration equipment to obtain the individual temperature characteristics of each sensor. Through the calibration, it was found that the output of the tested pressure measurement system is positively linear with pressure at the same temperatures and nearly negatively linear with temperature at the same pressures, which serves as the bias correction for the subsequent bilinear interpolation temperature compensation method. Based on this result, after least squares fitting and interpolating, a bilinear interpolation approach was introduced to compensate for temperature-induced pressure bias, which is easier to implement in a microcontroller (MCU). The test results show that the proposed method significantly improves the overall measurement accuracy of the tested sensor from 21.2% F.S. to 0.1% F.S. In addition, it reduces the MCU computational complexity of the compensation model, meeting the high accuracy demand for downhole pressure monitoring at high temperatures and pressures.

14.
ACS Nano ; 18(35): 24458-24468, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39169816

RESUMO

Improving the catalytic efficiency of platinum group metal-free (PGM-free) catalysts for the sluggish alkaline hydrogen oxidation reaction (HOR) is crucial to the anion exchange membrane fuel cell. Recently, numerous Ni-based heterostructures have been designed based on bifunctional theory to enhance HOR activity by optimizing the binding energy of both H* and OH*; however, their activities are still far inferior to those of PGM catalysts. Indeed, the long transfer pathway for intermediates between different active sites in such heterostructures has rarely been investigated, which could be the reason for the bottleneck. Here, we design a Ni/MoOxHy heterostructure catalyst to promote H* migration from the Ni side to the interface for alkaline HOR via the hydrogen spillover effect. In situ X-ray absorption fine structure, Raman characterizations, H/D kinetic isotope effects, and theoretical calculations have proven facile H* migration from the Ni side to the interface, which further reacts with OH* on the MoOxHy surface. Besides, the hydrogen spillover effect is also beneficial for the preservation of the metallic phase of Ni during the reaction. The catalyst exhibits a high activity with Jk,m of 58.5 mA mgNi-1 and j0,s of 42 µA cmNi-2, which is among the best PGM-free catalysts and is even comparable to some PGM catalysts. It also shows the highest power density (511 mW cm-2) as a PGM-free anode when assembled into fuel cells under moderate back pressure. These findings prove that in addition to optimizing electrophilicity and oxophilicity for active sites, we could also improve the HOR activity from the transfer pathway for intermediates, which provides insight into the design of other efficient HOR catalysts.

15.
J Ethnopharmacol ; 335: 118636, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-39089658

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ischemic stroke is an acute central nervous system disease that poses a threat to human health. It induces a series of severe pathological mechanisms, ultimately leading to neuronal cell death in the brain due to local ischemia and hypoxia. Buyang Huanwu decoction (BYHWD), as a representative formula for treating ischemic stroke, has shown good therapeutic effects in stroke patients. AIM OF THE STUDY: This study aimed to explore the mechanism of BYHWD in promoting neural remodeling after ischemic stroke from the perspective of neuronal synaptic plasticity, based on the cAMP/PKA/CREB signaling pathway. MATERIALS AND METHODS: A modified suture technique was employed to establish a rat model of MCAO. The rats were divided into sham, model, and BYHWD (20 g/kg) groups. After the corresponding intervention, rat brains from each group were collected. TMT quantitative proteomics technology was employed for the research. Following proteomics studies, we investigated the mechanism of BYHWD in the intervention of ischemic stroke through animal experiments and cell experiments. The experimental animals were divided into sham, model, and BYHWD (5 g/kg, 10 g/kg, and 20 g/kg) groups. Infarct volume and severity of brain injury were measured by TTC staining. HE staining was utilized to evaluate alterations in tissue morphology. The Golgi staining was used to observe changes in cell body, dendrites, and dendritic spines. Transmission electron microscopy was used to observe the ultrastructure of synapses in the cortex and hippocampus. TUNEL staining was conducted to identify apoptotic neurons. Meanwhile, a stable and reliable (OGD/R) SH-SY5Y cell model was established. The effect of BYHWD-containing serum on SH-SY5Y cell viability was measured by CCK-8 kit. The apoptosis situation of SH-SY5Y cells was determined by Annexin V-FITC/PI. Immunofluorescence was employed to measure the fluorescence intensity of synaptic-related factors Syt1, Psd95, and Syn1. Synaptic plasticity pathways were assessed by using RT-qPCR and Western blot to determine the expression levels of cAMP, Psd95, Prkacb, Creb1/p-Creb1, BDNF, Shank2, Syn1, Syt1, Bcl-2, Bcl-2/Bax mRNA and proteins. RESULTS: After treatment with BYHWD, notable alterations were detected in the signaling pathways linked to synaptic plasticity and the cAMP signaling pathway-related targets among the intervention targets. This trend of change was also reflected in other bioinformatics analyses, indicating the important role of synaptic plasticity changes before and after modeling and drug intervention. The results of vivo and vitro experiments showed that BYHWD improved local pathological changes, and reduced cerebral infarct volume, and neurological function scores in MCAO rats. It increased dendritic spine density, improved synaptic structural plasticity, and had a certain neuroprotective effect. BYHWD increased the postsynaptic membrane thickness, synaptic interface curvature, and synaptic quantity. 10% BYHWD-containing serum was determined as the optimal concentration for treatment. 10% BYHWD-containing serum significantly reduced the overall apoptotic rate of (OGD/R) SH-SY5Y cells. Immunofluorescence experiments demonstrated that 10% BYHWD-containing serum could improve synaptic plasticity and increase the relative expression levels of synaptic-related proteins Syt1, Psd95, and Syn1. BYHWD and decoction-containing serum upregulated the mRNA and protein expression levels in (OGD/R) SH-SY5Y cells and MCAO rats, suggesting its ability to improve damaged neuronal synaptic plasticity and enhance transmission efficiency, which might be achieved through the regulation of the cAMP/PKA/CREB pathway. CONCLUSIONS: This study may provide a basis for clinical medication by elucidating the underlying experimental evidence for the promotion of neural plasticity after ischemic stroke by BYHWD.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , AMP Cíclico , Medicamentos de Ervas Chinesas , AVC Isquêmico , Plasticidade Neuronal , Ratos Sprague-Dawley , Transdução de Sinais , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Plasticidade Neuronal/efeitos dos fármacos , AVC Isquêmico/tratamento farmacológico , Masculino , AMP Cíclico/metabolismo , Ratos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico
16.
Curr Zool ; 70(4): 480-487, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39176059

RESUMO

Dispersal is an important life history trait that plays a crucial role in avoiding inbreeding. Uncovering the dispersal pattern of a threatened species facilitates conservation efforts. Most species of Galliformes are forest-dwelling terrestrial birds with a weak dispersal ability and high conservation priorities. However, little is known about the dispersal behavior and dispersal pattern of Galliformes species such as Reeves's pheasant Syrmaticus reevesii, a globally vulnerable species endemic to China. Here, we integrated behavioral and genetic analyses to investigate the dispersal pattern of Reeves's pheasant. Our results revealed that both females and males would disperse, although the overall dispersal pattern was more likely to be male-biased. Reeves's pheasant population had a low level of genetic diversity and a mild level of inbreeding. Speculation low genetic diversity was resulted from fragmented habitat, and male-biased dispersal may reduce the opportunity of inbreeding. Our research indicated that sex-biased dispersal patterns may be a behavioral mechanism adopted by wildlife to avoid inbreeding in a fragmented habitat.

17.
Front Cardiovasc Med ; 11: 1339701, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39149586

RESUMO

Background: At present, no consensus is reached among articles that investigate the relationship of paraoxonase 1(PON1) -108C/T polymorphism with susceptibility of coronary heart disease (CHD) so far. In this regard, the present meta-analysis was conducted to comprehensively review existing articles related to the relationship of PON1 -108C/T polymorphism with CHD susceptibility. It was preregistered in the International Platform of Registered Systematic Review and Meta-Analysis Protocols (INPLASY)-INPLASY202430117. Methods: Articles that explored the relationship between PON1 -108C/T polymorphism and CHD incidence were searched from electronic databases according to our preset study selection criteria. Thereafter, we adopted stata 12.0 software to analyze our screened studies. At the same time, odds ratios (ORs) and related 95% confidence intervals (95% CIs) were determined for evaluating association strength. Results: At last, this meta-analysis selected altogether 13 case-control studies that involved 2,979 cases and 2,887 control subjects. We found that the PON1 -108C/T polymorphism displayed marked relationship with CHD susceptibility (T vs. C: OR = 1.24, 95% CI 1.07-1.45; CT vs. CC: OR = 1.33, 95% CI 1.17-1.52; TT vs. CC: OR = 1.51, 95% CI 1.09-2.09; Recessive model: OR = 1.16, 95% CI 0.93-1.45; Dominant model: OR = 1.45, 95% CI 1.16-1.81). Moreover, subgroup analysis showed that race and sample size had no impact on the results. Bioinformatics analysis showed that -108C>T polymorphism was relation to PON1 gene expression (https://gtexportal.org/home/). Conclusions: The PON1 -108T allele is identified as the possible low-penetrant risk factor of CHD, as suggested by our present meta-analysis.Systematic Review Registration: https://inplasy.com/inplasy-2024-3-0117/, Identifier INPLASY202430117.

18.
Clin Mol Hepatol ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39103994

RESUMO

Background: Intrahepatic cholangiocarcinoma (ICC) is a highly desmoplastic tumor with poor prognosis even after curative resection. We investigated the associations between the composition of the ICC stroma and immune cell infiltration and aimed to develop a stromal-immune signature to predict prognosis in surgically treated ICC. Patients and methods: We recruited 359 ICC patients and performed immunohistochemistry to detect α-smooth muscle actin (α-SMA), CD3, CD4, CD8, Foxp3, CD68, and CD66b. Aniline was used to stain collagen deposition. Survival analyses were performed to detect prognostic values of these markers. Recursive partitioning for a discrete-time survival tree was applied to define a stromal-immune signature with distinct prognostic value. We delineated an integrated stromal-immune signature based on immune cell subpopulations and stromal composition to distinguish subgroups with different recurrence-free survival (RFS) and overall survival (OS) time. Results: We defined four major patterns of ICC stroma composition according to the distributions of α-SMA and collagen: dormant (α-SMAlow/collagenhigh), fibrogenic (α-SMAhigh/collagenhigh), inert (α-SMAlow/collagenlow), and fibrolytic (α-SMAhigh/collagenlow). The stroma types were characterized by distinct patterns of infiltration by immune cells. We divided patients into six classes. Class I, characterized by high CD8 expression and dormant stroma, displayed the longest RFS and OS, whereas Class VI, characterized by low CD8 expression and high CD66b expression, displayed the shortest RFS and OS. The integrated stromal-immune signature was consolidated in a validation cohort. Conclusion: We developed and validated a stromal-immune signature to predict prognosis in surgically treated ICC. These findings provide new insights into the stromal-immune response to ICC.

19.
Transl Pediatr ; 13(7): 1033-1050, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39144431

RESUMO

Background: Studies have revealed that inflammatory response is relevant to the tetralogy of Fallot (TOF). However, there are no studies to systematically explore the role of the inflammation-related genes (IRGs) in TOF. Therefore, based on bioinformatics, we explored the biomarkers related to inflammation in TOF, laying a theoretical foundation for its in-depth study. Methods: TOF-related datasets (GSE36761 and GSE35776) were downloaded from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) between TOF and control groups were identified in GSE36761. And DEGs between TOF and control groups were intersected with IRGs to obtain differentially expressed IRGs (DE-IRGs). Afterwards, the least absolute shrinkage and selection operator (LASSO) and random forest (RF) were utilized to identify the biomarkers. Next, immune analysis was carried out. The transcription factor (TF)-mRNA, lncRNA-miRNA-mRNA, and miRNA-single nucleotide polymorphism (SNP)-mRNA networks were created. Finally, the potential drugs targeting the biomarkers were predicted. Results: There were 971 DEGs between TOF and control groups, and 29 DE-IRGs were gained through the intersection between DEGs and IRGs. Next, a total of five biomarkers (MARCO, CXCL6, F3, SLC7A2, and SLC7A1) were acquired via two machine learning algorithms. Infiltrating abundance of 18 immune cells was significantly different between TOF and control groups, such as activated B cells, neutrophil, CD56dim natural killer cells, etc. The TF-mRNA network contained 4 mRNAs, 31 TFs, and 33 edges, for instance, ELF1-CXCL6, CBX8-SLC7A2, ZNF423-SLC7A1, ZNF71-F3. The lncRNA-miRNA-mRNA network was created, containing 4 mRNAs, 4 miRNAs, and 228 lncRNAs. Afterwards, nine SNPs locations were identified in the miRNA-SNP-mRNA network. A total of 21 drugs were predicted, such as ornithine, lysine, arginine, etc. Conclusions: Our findings detected five inflammation-related biomarkers (MARCO, CXCL6, F3, SLC7A2, and SLC7A1) for TOF, providing a scientific reference for further studies of TOF.

20.
Small ; : e2404135, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087389

RESUMO

To effectively solve the challenges of rapid capacity decay and electrode crushing of silicon-carbon (Si-C) anodes, it is crucial to carefully optimize the structure of Si-C active materials and enhance their electron/ion transport dynamic in the electrode. Herein, a unique hybrid structure microsphere of Si/C/CNTs/Cu with surface wrinkles is prepared through a simple ultrasonic atomization pyrolysis and calcination method. Low-cost nanoscale Si waste is embedded into the pyrolysis carbon matrix, cleverly combined with the flexible electrical conductivity carbon nanotubes (CNTs) and copper (Cu) particles, enhancing both the crack resistance and transport kinetics of the entire electrode material. Remarkably, as a lithium-ion battery anode, the fabricated Si/C/CNTs/Cu electrode exhibits stable cycling for up to 2300 cycles even at a current of 2.0 A g-1, retaining a capacity of ≈700 mAh g-1, with a retention rate of 100% compared to the cycling started at a current of 2.0 A g-1. Additionally, when paired with an NCM523 cathode, the full cell exhibits a capacity of 135 mAh g-1 after 100 cycles at 1.0 C. Therefore, this synthesis strategy provides insights into the design of long-life, practical anode electrode materials with micro/nano-spherical hybrid structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA