Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 35(7): 1897-1906, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39233419

RESUMO

Rosa multiflora, originated from East Asia, is one of the original ancestors of modern roses. It is also an important genetic resource and rootstock for rose cultivation. Due to its high resistance and vigorous growth, R. multiflora has become an invasive species in some introduction sites, such as North America. To explore the correlation between the suitable habitat of R. multiflora and climate change, we predicted its potential geographic distribution with an optimized MaxEnt model based on 1246 distribution records and nine bioclimatic variables. The results showed that the mean temperature of the coldest quarter, minimum temperature of the coldest month, precipitation of the warmest quarter, and isothermality were significant bioclimatic variables affecting the potential geographic distribution of R. multiflora. Under current climate conditions, R. multiflora naturally distributed in the plains and hilly areas to the east and south of the Loess Plateau. The distribution pattern in the mid-holocene was similar to its current distribution, but the highly suitable distribution area was in the south of North China Plain, the Sichuan Basin, and parts of the Middle-Lower Yangtze Plain. During the last interglacial, the suitable areas generally contrac-ted southward, while the highly suitable areas significantly expanded and mainly located in the Sichuan Basin, the Middle-Lower Yangtze Plains, the Yunnan-Guizhou Plateau, and the Southeast Hills. Beyond its natural distribution in East Asia, R. multiflora had been introduced and spread to most parts of Europe and the central and eastern United States. The distribution area of R. multiflora would expand under three warming scenarios of different shared socioeconomic pathways (SSP1-2.6, SSP2-4.5, and SSP5-8.5) during 2041-2060 and 2081-2100. Its average distribution center (centroid) would shift towards higher latitude, indicating that the distribution of R. multiflora was closely related to climate change and that global warming might lead to an expansion of its distribution area. These results would improve our understanding of the ecological adaptability of R. multiflora, facilitate the predicting of its future distribution, and provide a theoretical basis for monitoring and early warning measures following its introduction.


Assuntos
Mudança Climática , Ecossistema , Espécies Introduzidas , Rosa , Rosa/crescimento & desenvolvimento , China , Simulação por Computador , Dispersão Vegetal
2.
Huan Jing Ke Xue ; 40(3): 1222-1235, 2019 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-31087969

RESUMO

This study was done to understand the diel variation and factors influencing the hydrochemistry of the Lijing River in different seasons. This is a typical medium river located at Guilin City in the Guangxi Zhuang Autonomous Region, SW China. The Shengli site was selected for this study. Two-day monitoring work with a high resolution rate logger and high frequency sampling at 2 hour intervals was conducted at the Shengli site of the Lijiang River in summer and autumn separately. Physical and hydrogeochemical parameters including pH, dissolved oxygen (DO), water temperature (T), electrical conductivity (EC), dissolved inorganic carbon (DIC), isotopes, and other chemical parameters were examined. The results show that:① the physical and hydrochemical parameters[T, pH, DO, SIC, EC, p (CO2)] and major ions (HCO3-, Ca2+) at the Shengli site displayed regular diel variation during monitoring. The data for T, pH, DO, and SIC increased in daylight and decreased at night, while the data for Ca2+, HCO3-, EC, and p (CO2) decreased in daylight and increased at night. ② The diurnal changes of nutrient elements (SO42-, NO3-, Cl-, Na+, Mg2+, and K+) at the Shengli site were mainly controlled by photosynthesis and respiration of aquatic plants, and showed the trend of decrease in daylight and increase at night. Due to the influence of a flood in mid-August 2017, the amount of diurnal variation in the nutrient element levels in summer was less than that in autumn. ③ The δ13CDIC increased in daylight and decreased at night both in summer and autumn, reflecting the influences of photosynthesis and precipitation. Under the influence of different root systems, soil microbial respiration intensity, and seasonal variation of river hydrological factors, the δ13CDIC in summer was generally lighter than that in autumn, with average values of -10.08‰ and -8.90‰, respectively. ④ The daily average fixation amount of karst carbon sink caused by aquatic plants was calculated to be 2.12 mmol·L-1 and 0.94 mmol·L-1 for Autumn and Summer, respectively. To sum up, there is a higher efficiency of karst carbon sink caused by aquatic plants in Autumn than that in Summer.

3.
Huan Jing Ke Xue ; 40(2): 924-933, 2019 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-30628361

RESUMO

To investigate the factors influencing the spatial variability in soil respiration among different land use patterns in a karst non-karst interactive distribution area, field experiments were conducted in Maocun Village, Guilin. Soil respiration, δ13C-CO2 value, and relevant environment, vegetation, and soil factors were measured. The spatial variability in soil respiration and the relationship between soil respiration and these measured factors were examined. The results indicated that soil respiration rates ranged from 1.39 µmol·(m2·s)-1 to 5.31 µmol·(m2·s)-1, with the highest value being approximately 3.8 times the minimum. Soil respiration varied significantly among different land use patterns under different lithology zones. The soil respiration rate of the G2 pines in the same lithology area was 2.3 times higher than that in the orchard G1 point after the destruction of the forest. The soil respiration caused an increase in CO2 concentration in the atmosphere and a decrease in the δ13C-CO2 value; the relationship between the two could be described by an inverse proportional function. The study found that in mid-April, the average water heat condition was close to that of the entire year. The difference in soil organic carbon content caused by land use was a driving factor of the spatial variability in soil respiration. In all ecosystems studied, the relationship between soil respiration and soil organic carbon content and total nitrogen content could be described by a two-element linear regression equation and explained 92.8% of the spatial variability in soil respiration.

4.
Molecules ; 23(2)2018 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-29439505

RESUMO

Rosa chinensis var. spontanea, an endemic and endangered plant of China, is one of the key ancestors of modern roses and a source for famous traditional Chinese medicines against female diseases, such as irregular menses and dysmenorrhea. In this study, the complete chloroplast (cp) genome of R. chinensis var. spontanea was sequenced, analyzed, and compared to congeneric species. The cp genome of R. chinensis var. spontanea is a typical quadripartite circular molecule of 156,590 bp in length, including one large single copy (LSC) region of 85,910 bp and one small single copy (SSC) region of 18,762 bp, separated by two inverted repeat (IR) regions of 25,959 bp. The GC content of the whole genome is 37.2%, while that of LSC, SSC, and IR is 42.8%, 35.2% and 31.2%, respectively. The genome encodes 129 genes, including 84 protein-coding genes (PCGs), 37 transfer RNA (tRNA) genes, and eight ribosomal RNA (rRNA) genes. Seventeen genes in the IR regions were found to be duplicated. Thirty-three forward and five inverted repeats were detected in the cp genome of R. chinensis var. spontanea. The genome is rich in SSRs. In total, 85 SSRs were detected. A genome comparison revealed that IR contraction might be the reason for the relatively smaller cp genome size of R. chinensis var. spontanea compared to other congeneric species. Sequence analysis revealed that the LSC and SSC regions were more divergent than the IR regions within the genus Rosa and that a higher divergence occurred in non-coding regions than in coding regions. A phylogenetic analysis showed that the sampled species of the genus Rosa formed a monophyletic clade and that R. chinensis var. spontanea shared a more recent ancestor with R. lichiangensis of the section Synstylae than with R. odorata var. gigantea of the section Chinenses. This information will be useful for the conservation genetics of R. chinensis var. spontanea and for the phylogenetic study of the genus Rosa, and it might also facilitate the genetics and breeding of modern roses.


Assuntos
Cloroplastos/genética , Genes de Plantas , Genoma de Cloroplastos , Filogenia , Rosa/genética , Composição de Bases , Evolução Biológica , China , Duplicação Gênica , Ontologia Genética , Tamanho do Genoma , Sequências Repetidas Invertidas , Anotação de Sequência Molecular , Fases de Leitura Aberta , Rosa/classificação , Análise de Sequência de DNA
5.
Chemistry ; 21(36): 12620-6, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26230284

RESUMO

The mild preparation of multifunctional nanocomposite hydrogels is of great importance for practical applications. We report that bioinorganic nanocomposite hydrogels, with calcium niobate nanosheets as cross-linkers, can be prepared by dual-enzyme-triggered polymerization and exfoliation of the layered composite. The layered HRP/calcium niobate composites (HRP=horseradish peroxidase) are formed by the assembly of the calcium niobate nanosheets with HRP. The dual-enzyme-triggered polymerization can induce the subsequent exfoliation of the layered composite and final gelation through the interaction between polymer chains and inorganic nanosheets. The self-immobilized HRP-GOx enzymes (GOx=glucose oxidase) within the nanocomposite hydrogel retain most of enzymatic activity. Evidently, their thermal stability and reusability can be improved. Notably, our strategy could be easily extended to other inorganic layered materials for the fabrication of other functional nanocomposite hydrogels.


Assuntos
Enzimas Imobilizadas/química , Glucose Oxidase/química , Peroxidase do Rábano Silvestre/química , Hidrogéis/química , Nanocompostos/química , Biocatálise , Catálise , Enzimas Imobilizadas/metabolismo , Glucose Oxidase/metabolismo , Peroxidase do Rábano Silvestre/metabolismo , Polimerização
6.
Yi Chuan ; 31(9): 962-6, 2009 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-19819850

RESUMO

The new SSR markers of rose related fragrance were developed based on the SSH cDNA libraries of rose floral scent mutant. In this study, 10 EST-SSRs (2.6%) from 391 ESTs in the libraries were identified. Six EST-SSRs primers were designed to sequence flanking SSRs. The primer pairs designed were screened on the wild-type Jinyindao, which has flowers full of pleasant scent, and the mutant-type Wangriqinghuai without perceivable floral scent. Five primer pairs were amplified effectively in Jinyindao and Wangriqinghuai, and 3 were polymorphic between Jinyindao and Wangriqinghuai. Eighteen rose cultivars including fragrant roses and nonfragrant roses were identified by the five prime pairs. These results proved that EST-SSR markers are effective markers to identify the polymorphism of the rose.


Assuntos
Etiquetas de Sequências Expressas , Biblioteca Gênica , Odorantes , Rosa/genética , Sequências de Repetição em Tandem/genética , Marcadores Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA