Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Elife ; 122023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37695169

RESUMO

Obesity induced by high-fat diet (HFD) is a multi-factorial disease including genetic, physiological, behavioral, and environmental components. Drosophila has emerged as an effective metabolic disease model. Cytidine 5'-triphosphate synthase (CTPS) is an important enzyme for the de novo synthesis of CTP, governing the cellular level of CTP and the rate of phospholipid synthesis. CTPS is known to form filamentous structures called cytoophidia, which are found in bacteria, archaea, and eukaryotes. Our study demonstrates that CTPS is crucial in regulating body weight and starvation resistance in Drosophila by functioning in the fat body. HFD-induced obesity leads to increased transcription of CTPS and elongates cytoophidia in larval adipocytes. Depleting CTPS in the fat body prevented HFD-induced obesity, including body weight gain, adipocyte expansion, and lipid accumulation, by inhibiting the PI3K-Akt-SREBP axis. Furthermore, a dominant-negative form of CTPS also prevented adipocyte expansion and downregulated lipogenic genes. These findings not only establish a functional link between CTPS and lipid homeostasis but also highlight the potential role of CTPS manipulation in the treatment of HFD-induced obesity.


The high rate of obesity has created a global health burden by leading to increased rates of chronic diseases like diabetes and cardiovascular disease. Tackling this issue is complicated as it is influenced by many factors, including genetics, behaviour and environment. To better understand the biochemical changes that underly metabolic issues in a simpler setting, scientists can study fruit flies in the laboratory. These insects share many genes with humans and have similar responses to a high-fat diet. Previous research identified an enzyme, called CTP synthase (CTPS), which is produced in large amounts by the liver and fat tissue in mammals, and the equivalent in fruit flies, known as the fat body. Multiple CTPS molecules can combine to form long strands of protein called cytoophidia, which have been seen in organisms ranging from humans to bacteria. Recent results showed that the fruit fly equivalent of CTPS drives fat cells to stick together, which is necessary to maintain and form fat tissue. However, it is not clear if altering the levels of CTPS can affect the response to a high-fat diet. To address this, Liu, Zhang, Wang et al. studied fruit flies on a high-fat diet, showing that this increased the production of CTPS. When the flies were treated to deplete levels of CTPS in the fat body, they had less body weight gain, smaller fat cells and lower amounts of fats in the body. Genetically modified flies with a version of CTPS that was unable to form cytoophidia also showed fewer signs of obesity, indicating how the enzyme might influence the response to dietary fats. These findings further implicate CTPS in the cause of obesity and help to understand its role. However, it remains to be seen if this also applies to humans. If this is the case, drugs that block the activity of CTPS could help to reduce the impact of a high-fat diet on public health.


Assuntos
Dieta Hiperlipídica , Corpo Adiposo , Animais , Dieta Hiperlipídica/efeitos adversos , Fosfatidilinositol 3-Quinases , Obesidade/prevenção & controle , Peso Corporal , Drosophila , Lipídeos
2.
Zhongguo Gu Shang ; 36(4): 393-8, 2023 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-37087632

RESUMO

Pentaxin 3 (PTX3), as a multifunctional glycoprotein, plays an important role in regulating inflammatory response, promoting tissue repair, inducing ectopic calcification and maintaining bone homeostasis. The effect of PTX3 on bone mineral density (BMD) may be affected by many factors. In PTX3 knockout mice and osteoporosis (OP) patients, the deletion of PTX3 will lead to decrease of BMD. In Korean community "Dong-gu study", it was found that plasma PTX3 was negatively correlated with BMD of femoral neck in male elderly patients. In terms of bone related cells, PTX3 plays an important role in maintaining the phenotype and function of osteoblasts (OB) in OP state;for osteoclast (OC), PTX3 in inflammatory state could stimulate nuclear factor κ receptor activator of nuclear factor-κB ligand (RANKL) production and its combination with TNF-stimulated gene 6(TSG-6) could improve activity of osteoclasts and promote bone resorption;for mesenchymal stem cells (MSCs), PTX3 could promote osteogenic differentiation of MSCs through PI3K/Akt signaling pathway. In recent years, the role of PTX3 as a new bone metabolism regulator in OP and fracture healing has been gradually concerned by scholars. In OP patients, PTX3 regulates bone mass mainly by promoting bone regeneration. In the process of fracture healing, PTX3 promotes fracture healing by coordinating bone regeneration and bone resorption to maintain bone homeostasis. In view of the above biological characteristics, PTX3 is expected to become a new target for the diagnosis and treatment of OP and other age-related bone diseases and fracture healing.


Assuntos
Reabsorção Óssea , Consolidação da Fratura , Osteoporose , Animais , Masculino , Camundongos , Reabsorção Óssea/metabolismo , Diferenciação Celular , Consolidação da Fratura/genética , Osteoblastos , Osteoclastos , Osteogênese , Osteoporose/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia
3.
Exp Cell Res ; 422(1): 113433, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36423659

RESUMO

Although most cells are mononuclear, the nucleus can exist in the form of binucleate or even multinucleate to respond to different physiological processes. The male accessory gland of Drosophila is the organ that produces semen, and its main cells are binucleate. Here we observe that CTP synthase (CTPS) forms filamentous cytoophidia in binuclear main cells, primarily located at the cell boundary. In CTPSH355A, a point mutation that destroys the formation of cytoophidia, we find that the nucleation mode of the main cells changes, including mononucleates and vertical distribution of binucleates. Although the overexpression of CTPSH355A can restore the level of CTPS protein, it will neither form cytoophidia nor eliminate the abnormal nucleation pattern. Therefore, our data indicate that there is an unexpected functional link between the formation of cytoophidia and the maintenance of binucleation in Drosophila main cells.


Assuntos
Carbono-Nitrogênio Ligases , Drosophila , Animais , Masculino , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/metabolismo , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Drosophila/metabolismo
4.
Int J Mol Sci ; 23(23)2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36499609

RESUMO

CTP synthase (CTPS) forms a filamentous structure termed the cytoophidium in all three domains of life. The female reproductive system of Drosophila is an excellent model for studying the physiological function of cytoophidia. Here, we use CTPSH355A, a point mutation that destroys the cytoophidium-forming ability of CTPS, to explore the in vivo function of cytoophidia. In CTPSH355A egg chambers, we observe the ingression and increased heterogeneity of follicle cells. In addition, we find that the cytoophidium-forming ability of CTPS, rather than the protein level, is the cause of the defects observed in CTPSH355A mutants. To sum up, our data indicate that cytoophidia play an important role in maintaining the integrity of follicle epithelium.


Assuntos
Citoesqueleto , Drosophila , Animais , Feminino , Drosophila/genética , Citoesqueleto/metabolismo , Epitélio , Folículo Ovariano
5.
Cell Mol Life Sci ; 79(10): 534, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36180607

RESUMO

Tissue architecture determines its unique physiology and function. How these properties are intertwined has remained unclear. Here we show that the metabolic enzyme CTP synthase (CTPS) form filamentous structures termed cytoophidia along the adipocyte cortex in Drosophila adipose tissue. Loss of cytoophidia, whether due to reduced CTPS expression or a point mutation that specifically abrogates its polymerization ability, causes impaired adipocyte adhesion and defective adipose tissue architecture. Moreover, CTPS influences integrin distribution and dot-like deposition of type IV collagen (Col IV). Col IV-integrin signaling reciprocally regulates the assembly of cytoophidia in adipocytes. Our results demonstrate that a positive feedback signaling loop containing both cytoophidia and integrin adhesion complex couple tissue architecture and metabolism in Drosophila adipose tissue.


Assuntos
Carbono-Nitrogênio Ligases , Colágeno Tipo IV , Animais , Tecido Adiposo/metabolismo , Carbono-Nitrogênio Ligases/química , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/metabolismo , Drosophila/metabolismo , Integrinas
6.
Cancer Res ; 82(6): 1013-1024, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35022212

RESUMO

The "undruggable" oncogene MYC supports cancer cell proliferation and survival through parallel induction of multiple anabolic processes. Here we find that inhibiting CTP synthase (CTPS) selectively decreases cell viability and induces DNA replication stress in MYC-overexpressing cells. MYC-driven rRNA synthesis caused the selective DNA replication stress upon CTPS inhibition. Combined inhibition of CTPS and ataxia telangiectasia and Rad3-related protein (ATR) is synthetically lethal in MYC-overexpressing cells, promoting cell death in vitro and decreasing tumor growth in vivo. Unexpectedly, interfering with CTPS1 but not CTPS2 is required to induce replication stress in MYC-deregulated cancer cells and consequent cell death in the presence of an ATR inhibitor. These results highlight a specific and key role of CTPS1 in MYC-driven cancer, suggesting that selectively inhibiting CTPS1 in combination with ATR could be a promising strategy to combat disease progression. SIGNIFICANCE: Inhibition of CTPS in MYC-overexpressing cells blocks pyrimidine synthesis while maintaining ribosome synthesis activity to create an anabolic imbalance that induces replication stress, providing a new approach to selectively target MYC-driven cancer. See related commentary by Chabanon and Postel-Vinay, p. 969.


Assuntos
Neoplasias , Inibidores de Proteínas Quinases , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Humanos , Neoplasias/genética
7.
Exp Cell Res ; 402(2): 112564, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33737069

RESUMO

The metabolic enzyme CTP synthase (CTPS) can form filamentous structures named cytoophidia in numerous types of cells, including follicle cells. However, the regulation of cytoophidium assembly remains elusive. The apicobasal polarity, a defining characteristic of Drosophila follicle epithelium, is established and regulated by a variety of membrane domains. Here we show that CTPS can form cytoophidia in Drosophila epithelial follicle cells. Cytoophidia localise to the basolateral side of follicle cells. If apical polarity regulators are knocked down, cytoophidia become unstable and distribute abnormally. Knockdown of basolateral polarity regulators has no significant effect on cytoophidia, even though the polarity is disturbed. Our results indicate that cytoophidia are maintained via polarised distribution on the basolateral side of Drosophila follicle epithelia, which is primarily achieved through the apical polarity regulators.


Assuntos
Carbono-Nitrogênio Ligases/genética , Polaridade Celular/genética , Epitélio/crescimento & desenvolvimento , Folículo Ovariano/crescimento & desenvolvimento , Animais , Citoplasma/genética , Citoesqueleto/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Epitélio/metabolismo , Feminino , Folículo Ovariano/metabolismo
8.
J Cancer ; 11(7): 1869-1882, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194798

RESUMO

Background: Hepatocellular carcinoma (HCC) has high morbidity and mortality and lacks effective biomarkers for early diagnosis and survival surveillance. Origin recognition complex (ORC), consisting of ORC1-6 isoforms, was examined to assess the potential significance of ORC isoforms for HCC prognosis. Methods: Oncomine and Gene Expression Profiling Interactive Analysis (GEPIA) databases were used to examine differential isoform expression, stage-specific expression, calculate Pearson correlations and perform survival analysis. A human protein atlas database was utilized to evaluate the protein expression of ORCs in liver tissue. The cBioPortal database was used to assess isoform mutations and the survival significance of ORCs in HCC. Cytoscape software was employed to construct gene ontologies, metabolic pathways and gene-gene interaction networks. Results: Differential expression analysis indicated that ORC1 and ORC3-6 were highly expressed in tumor tissues in the Oncomine and GEPIA databases, while ORC2 was not. All the ORCs were showed positive and statistically significant correlations with each other (all P<0.001). ORC1-2 and ORC4-6 expressions were associated with disease stages I-IV (all P<0.05), but ORC3 was not. Survival analysis found that ORC1 and ORC4-6 expressions were associated with overall survival (OS), and ORC1-3 and ORC5-6 expression were associated with recurrence-free survival (RFS; all P<0.05). In addition, low expression of these ORC genes consistently indicated better prognosis compared with high expression. Protein expression analysis revealed that ORC1 and ORC3-6 were expressed in normal liver tissues, whereas ORC2 was not. Enrichment analysis indicated that ORCs were associated with DNA metabolic process, sequence-specific DNA binding and were involved in DNA replication, cell cycle, E2F-enabled inhibition of pre-replication complex formation and G1/S transition. Conclusions: Differentially expressed ORC1, 5 and 6 are candidate biomarkers for survival prediction and recurrence surveillance in HCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA