Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 10(10)2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34680747

RESUMO

Xanthomonas oryzae severely impacts the yield and quality of rice. Antibiotics are the most common control measure for this pathogen; however, the overuse of antibiotics in past decades has caused bacterial resistance to these antibiotics. The agricultural context is of particular importance as antibiotic-resistant bacteria are prevalent, but the resistance mechanism largely remains unexplored. Herein, using gas chromatography-mass spectrometry (GC-MS), we demonstrated that zhongshengmycin-resistant X. oryzae (Xoo-Rzs) and zhongshengmycin-sensitive X. oryzae (Xoo-S) have distinct metabolic profiles. We found that the resistance to zhongshengmycin (ZS) in X. oryzae is related to increased fatty acid biosynthesis. This was demonstrated by measuring the Acetyl-CoA carboxylase (ACC) activity, the expression levels of enzyme genes involved in the fatty acid biosynthesis and degradation pathways, and adding exogenous materials, i.e., triclosan and fatty acids. Our work provides a basis for the subsequent control of the production of antibiotic-resistant strains of X. oryzae and the development of coping strategies.

2.
EBioMedicine ; 33: 218-229, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29941340

RESUMO

BACKGROUND: Human infections with the H7N9 virus could lead to lung damage and even multiple organ failure, which is closely associated with a high mortality rate. However, the metabolic basis of such systemic alterations remains unknown. METHODS: This study included hospitalized patients (n = 4) with laboratory-confirmed H7N9 infection, healthy controls (n = 9), and two disease control groups comprising patients with pneumonia (n = 9) and patients with pneumonia who received steroid treatment (n = 10). One H7N9-infected patient underwent lung biopsy for histopathological analysis and expression analysis of genes associated with lung homeostasis. H7N9-induced systemic alterations were investigated using metabolomic analysis of sera collected from the four patients by using ultra-performance liquid chromatography-mass spectrometry. Chest digital radiography and laboratory tests were also conducted. FINDINGS: Two of the four patients did not survive the clinical treatments with antiviral medication, steroids, and oxygen therapy. Biopsy revealed disrupted expression of genes associated with lung epithelial integrity. Histopathological analysis demonstrated severe lung inflammation after H7N9 infection. Metabolomic analysis indicated that fatty acid metabolism may be inhibited during H7N9 infection. Serum levels of palmitic acid, erucic acid, and phytal may negatively correlate with the extent of lung inflammation after H7N9 infection. The changes in fatty acid levels may not be due to steroid treatment or pneumonia. INTERPRETATION: Altered structural and secretory properties of the lung epithelium may be associated with the severity of H7N9-infection-induced lung disease. Moreover, fatty acid metabolism level may predict a fatal outcome after H7N9 virus infection.


Assuntos
Ácidos Graxos/metabolismo , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Influenza Humana/virologia , Pulmão/patologia , Idoso , Cromatografia Líquida de Alta Pressão , Feminino , Hospitalização , Humanos , Oxigenoterapia Hiperbárica , Influenza Humana/metabolismo , Influenza Humana/patologia , Influenza Humana/terapia , Masculino , Metabolômica/métodos , Pessoa de Meia-Idade , Esteroides/uso terapêutico , Resultado do Tratamento
3.
Oncotarget ; 8(39): 64867-64877, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-29029397

RESUMO

An aberrant systemic artery supply results in recurrent infections in the abnormal lung lobe of intralobar pulmonary sequestration (ILS). The mechanisms underlying such persistent inflammation are unknown. Here, we hypothesize that alteration of an endothelial cell niche for alveolar epithelial cells results in the impaired proliferation potential of alveolar progenitor cells, leading to the defective defense mechanism in intralobar pulmonary sequestration. Paraffin sections of lung tissues from patients with intralobar pulmonary sequestration or from healthy controls were collected for analysis of alveolar epithelial alterations in intralobar pulmonary sequestration by quantitative RT-PCR or immunofluorescent staining. Differential transcripts were identified between human pulmonary artery endothelial cells and human aortic endothelial cells by microarray. Validation of microarray data by quantitative PCR analysis indicated that thrombospondin-1 expression level is low in near-lesion part but high in lesion part of ILS lobe as compared to healthy controls. In vitro 3-D matrigel culture was adopted to evaluate the regulation of alveolar progenitor cells by thrombospondin-1 and CD36. We found that the proliferative potential of alveolar type 2 stem/progenitor cells was impaired in intralobar pulmonary sequestration. Mechanistically, we discovered that endothelial thrombospondin-1 promotes alveolar type 2 cell proliferation through the interaction with CD36. These data demonstrate that alveolar stem cells are impaired in the abnormal lobe from patients with intralobar pulmonary sequestration and imply that restoring epithelial integrity can be beneficial for the future treatments of recurrent infections in lung pathologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA