Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(10): 4342-4353, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36864006

RESUMO

The association of poorly crystalline iron (hydr)oxides with organic matter (OM), such as extracellular polymeric substances (EPS), exerts a profound effect on Fe and C cycles in soils and sediments, and their behaviors under sulfate-reducing conditions involve complicated mineralogical transformations. However, how different loadings and types of EPS and water chemistry conditions affect the sulfidation still lacks quantitative and systematic investigation. We here synthesized a set of ferrihydrite-organic matter (Fh-OM) coprecipitates with various model compounds for plant and microbial exopolysaccharides (polygalacturonic acids, alginic acid, and xanthan gum) and bacteriogenic EPS (extracted from Bacillus subtilis). Combining wet chemical analysis, X-ray diffraction, and X-ray absorption spectroscopic techniques, we systematically studied the impacts of C and S loadings by tracing the temporal evolution of Fe mineralogy and speciation in aqueous and solid phases. Our results showed that the effect of added OM on sulfidation of Fh-OM coprecipitates is interrelated with the amount of loaded sulfide. Under low sulfide loadings (S(-II)/Fe < 0.5), transformation to goethite and lepidocrocite was the main pathway of ferrihydrite sulfidation, which occurs more strongly at pH 6 compared to that at pH 7.5, and it was promoted and inhibited at low and high C/Fe ratios, respectively. While under high sulfide loadings (S(-II)/Fe > 0.5), the formation of secondary Fe-S minerals such as mackinawite and pyrite dominated ferrihydrite sulfidation, and it was inhibited with increasing C/Fe ratios. Furthermore, all three synthetic EPS proxies unanimously inhibited mineral transformation, while the microbiogenic EPS has a more potent inhibitory effect than synthetic EPS proxies compared at equivalent C/Fe loadings. Collectively, our results suggest that the quantity and chemical characteristics of the associated OM have a strong and nonlinear influence on the extent and pathways of mineralogical transformations of Fh-OM sulfidation.


Assuntos
Carbono , Matriz Extracelular de Substâncias Poliméricas , Oxirredução , Compostos Férricos/química , Minerais/química , Enxofre , Água
2.
J Hazard Mater ; 443(Pt B): 130187, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36327834

RESUMO

Despite of the extensive research in semiconductor photocatalysis with respect to material and device innovations, much of the fundamental aquatic chemistry of those new materials that governs their environmental hazard and implications remains poorly understood. BiVO4 has long been recognized as a promising visible-light-responsive photocatalyst. However, the solubility product (Ksp) of BiVO4 and the mechanistic understanding of the non-stoichiometric dissolution of BiVO4 remain unclear. Here, we investigated the solubility of BiVO4 via the observation on its non-stoichiometric dissolution in the pH range of 4-9. Combining dissolution experiments, adsorption behavior and thermodynamic equilibrium calculations, the Ksp of BiVO4 was determined to be 10-35.81±0.51. The solubility and stability of BiVO4 were strongly pH-dependent, with the lowest solubility and highest stability near pH 5. Furthermore, we tested the effect of illumination on the dissolution of BiVO4, which was significantly enhanced by light. Under both dark and illumination conditions, adsorption of dissolved bismuth by BiVO4 solids was the main reason for the non-stoichiometric dissolution of BiVO4, and could be modeled by including an additional surface complexation reaction. Thus, the results highlighted the importance of considering the dissolution of photocatalysts, and presented a feasible method to evaluate environmental stability and risks of other semiconductor materials.

3.
Environ Sci Technol ; 55(13): 9352-9361, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34133145

RESUMO

Adsorption of uranium onto goethite is an important partitioning process that controls uranium mobility in subsurface environments, for which many different surface complexation models (SCMs) have been developed. While individual models can fit the data for which they are parameterized, many perform poorly when compared with experimental data covering a broader range of conditions. There is an imperative need to quantitatively evaluate the variations in the models and to develop a more robust model that can be used with more confidence across the wide range of conditions. We conducted an intercomparison and refinement of the SCMs based on a metadata analysis. By seeking the globally best fit to a composite dataset with wide ranges of pH, solid/sorbate ratios, and carbonate concentrations, we developed a series of models with different levels of complexity following a systematic roadmap. The goethite-uranyl-carbonate ternary surface complexes were required in every model. For the spectroscopically informed models, a triple-plane model was found to provide the best fit, but the performance of the double-layer model with bidentate goethite-uranyl and goethite-uranyl-carbonate complexes was also comparable. Nevertheless, the models that ignore the bidentate feature of uranyl surface complexation consistently performed poorly. The goodness of fitting for the models that ignore adsorption of carbonate and the charge distributions was not significantly compromised compared with that of their counterparts that considered those. This approach of model development for a large and varied dataset improved our understanding of U(VI)-goethite surface reactions and can lead to a path for generating a single set of reactions and equilibrium constants for including U(VI) adsorption onto goethite in reactive transport models.


Assuntos
Compostos de Ferro , Urânio , Adsorção , Concentração de Íons de Hidrogênio , Metadados , Minerais
4.
Environ Sci Technol ; 55(9): 5929-5938, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33822593

RESUMO

Reduction of U(VI) to U(IV) drastically reduces its solubility and has been proposed as a method for remediation of uranium contamination. However, much is still unknown about the kinetics, mechanisms, and products of U(VI) bioreduction in complex systems. In this study, U(VI) bioreduction experiments were conducted with Shewanella putrefaciens strain CN32 in the presence of clay minerals and two organic ligands: citrate and EDTA. In reactors with U and Fe(III)-clay minerals, the rate of U(VI) bioreduction was enhanced due to the presence of ligands, likely because soluble Fe3+- and Fe2+-ligand complexes served as electron shuttles. In the presence of citrate, bioreduced U(IV) formed a soluble U(IV)-citrate complex in experiments with either Fe-rich or Fe-poor clay mineral. In the presence of EDTA, U(IV) occurred as a soluble U(IV)-EDTA complex in Fe-poor montmorillonite experiments. However, U(IV) remained associated with the solid phase in Fe-rich nontronite experiments through the formation of a ternary U(IV)-EDTA-surface complex, as suggested by the EXAFS analysis. Our study indicates that organic ligands and Fe(III)-bearing clays can significantly affect the microbial reduction of U(VI) and the stability of the resulting U(IV) phase.


Assuntos
Compostos Férricos , Urânio , Argila , Ligantes , Minerais , Oxirredução
5.
Environ Sci Technol ; 54(21): 14124-14133, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33064452

RESUMO

Dissolved Mn(III) species have been recognized as a significant form of Mn in redox transition environments, but a holistic understanding of their geochemical properties still lacks the characterization of their reactivity as reductants. Through using PbO2 as a surrogate oxidant and pyrophosphate (PP) as a model ligand, we evaluated the thermodynamic and kinetic constrains of dissolved Mn(III) oxidation under environmentally relevant pH. Without disproportionation, Mn(III) complexes could be directly oxidized by PbO2 to produce Mn oxides. The reaction rates decreased with increasing PP:Mn(III) ratio and became negligible when the ratio was above a threshold value. Particulate manganite could also be oxidized by PbO2 with detectable production of Pb(II). The favorability of Mn(III) oxidation by PbO2 as a function of the PP:Mn ratio could be predicted by the stability constant of the Mn(III)-PP complex. We developed kinetic models that couple multiple pathways of Mn oxidation by PbO2 to simulate the dynamics of Pb release, loss of dissolved Mn, as well as Mn(III) production and consumption. Beyond the context of Mn geochemistry, the interactions between Pb and various Mn species, including its trivalent forms, may also have important implications to the water quality in lead service lines within distribution systems.


Assuntos
Oxidantes , Óxidos , Chumbo , Manganês , Compostos de Manganês , Oxirredução
6.
Langmuir ; 35(25): 8220-8227, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31140818

RESUMO

The interactions between organic ligands, Fe(II), and iron oxides are important in biogeochemical redox processes. The effect of phthalic acid (PHA) on the reductive reactivity of Fe(II) associated with goethite was examined using batch adsorption and kinetic studies, attenuated total reflectance?Fourier transform infrared spectroscopy (ATR?FTIR), and surface complexation modeling (SCM). PHA significantly inhibited the reductive reactivity of Fe(II)/goethite, as quantified by the pseudo-first-order reduction rate constants ( k) of p-cyanonitrobenzene. The k value decreased from 1.68 ? 0.03 to 0.338 ? 0.14 h?1 at pH 6.0 as the PHA concentration increased from 0 to 1000 ?M. The effects of the co-adsorption of Fe(II) and PHA onto goethite were then investigated to study the inhibition mechanism. The adsorption experiments showed that Fe(II) slightly enhanced PHA adsorption, whereas PHA did not affect Fe(II) adsorption, suggesting that the inhibition was not due to different amounts of Fe(II) adsorbed. The ATR?FTIR spectra of the adsorbed PHA in the ternary mixtures demonstrated that the major surface species was outer-sphere species, with minor inner-sphere complexes formed. SCM results showed that the presence of PHA (L) led to the formation of a type A ternary species ((?FeOFe+)2???L2?) on the goethite surface, decreasing the abundance of the reactive species (?FeOFeOH). Moreover, the adsorption of PHA on the surface of goethite might block the reactive sites and inhibit the electron transfer between Fe(II) and goethite, thus decreasing the reactivity. Overall, these findings provided new insights into the reaction mechanisms of surface-adsorbed Fe(II), which will facilitate the development of new technologies for site remediation and more accurate risk assessment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA