Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
1.
Inflamm Res ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008037

RESUMO

BACKGROUND: Microglia, the main innate immune cells in the central nervous system, are key drivers of neuroinflammation, which plays a crucial role in the pathogenesis of neurodegenerative diseases. The Sin3/histone deacetylase (HDAC) complex, a highly conserved multiprotein co-repressor complex, primarily performs transcriptional repression via deacetylase activity; however, the function of SDS3, which maintains the integrity of the complex, in microglia remains unclear. METHODS: To uncover the regulatory role of the transcriptional co-repressor SDS3 in microglial inflammation, we used chromatin immunoprecipitation to identify SDS3 target genes and combined with transcriptomics and proteomics analysis to explore expression changes in cells following SDS3 knocking down. Subsequently, we validated our findings through experimental assays. RESULTS: Our analysis revealed that SDS3 modulates the expression of the upstream kinase ASK1 of the p38 MAPK pathway, thus regulating the activation of signaling pathways and ultimately influencing inflammation. CONCLUSIONS: Our findings provide important evidence of the contributions of SDS3 toward microglial inflammation and offer new insights into the regulatory mechanisms of microglial inflammatory responses.

2.
Small ; : e2402991, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958092

RESUMO

In P2-type layered oxide cathodes, Na site-regulation strategies are proposed to modulate the Na+ distribution and structural stability. However, their impact on the oxygen redox reactions remains poorly understood. Herein, the incorporation of K+ in the Na layer of Na0.67Ni0.11Cu0.22Mn0.67O2 is successfully applied. The effects of partial substitution of Na+ with K+ on electrochemical properties, structural stability, and oxygen redox reactions have been extensively studied. Improved Na+ diffusion kinetics of the cathode is observed from galvanostatic intermittent titration technique (GITT) and rate performance. The valence states and local structural environment of the transition metals (TMs) are elucidated via operando synchrotron X-ray absorption spectroscopy (XAS). It is revealed that the TMO2 slabs tend to be strengthened by K-doping, which efficiently facilitates reversible local structural change. Operando X-ray diffraction (XRD) further confirms more reversible phase changes during the charge/discharge for the cathode after K-doping. Density functional theory (DFT) calculations suggest that oxygen redox reaction in Na0.62K0.03Ni0.11Cu0.22Mn0.67O2 cathode has been remarkably suppressed as the nonbonding O 2p states shift down in the energy. This is further corroborated experimentally by resonant inelastic X-ray scattering (RIXS) spectroscopy, ultimately proving the role of K+ incorporated in the Na layer.

3.
Int J Biol Macromol ; 274(Pt 1): 133243, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901507

RESUMO

To enhance the DNA/RNA amplification efficiency and inhibitor tolerance of Bst DNA polymerase, four chimeric Bst DNA polymerase by fusing with a DNA-binding protein Sto7d and/or a highly hydrophobic protein Hp47 to Bst DNA polymerase large fragment. One of chimeric protein HpStBL exhibited highest inhibitor tolerance, which retained high active under 0.1 U/µL sodium heparin, 0.8 ng/µL humic acid, 2.5× SYBR Green I, 8 % (v/v) whole blood, 20 % (v/v) tissue, and 2.5 % (v/v) stool. Meanwhile, HpStBL showed highest sensitivity (93.75 %) to crude whole blood infected with the African swine fever virus. Moreover, HpStBL showed excellent reverse transcriptase activity in reverse transcription loop-mediated isothermal amplification, which could successfully detect 0.5 pg/µL severe acute respiratory syndrome coronavirus 2 RNA in the presence of 1 % (v/v) stools. The fusion of two domains with different functions to Bst DNA polymerase would be an effective strategy to improve Bst DNA polymerase performance in direct loop-mediated isothermal amplification and reverse transcription loop-mediated isothermal amplification detection, and HpStBL would be a promising DNA polymerase for direct African swine fever virus/severe acute respiratory syndrome coronavirus 2 detection due to simultaneously increased inhibitor tolerance and reverse transcriptase activity.

4.
Adv Mater ; : e2405097, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38876140

RESUMO

Extensively-used rechargeable lithium-ion batteries (LIBs) face challenges in achieving high safety and long cycle life. To address such challenges, ultrathin solid polymer electrolyte (SPE) is fabricated with reduced phonon scattering by depositing the composites of ionic-liquid (1-ethyl-3-methylimidazolium dicyamide, EMIM:DCA), polyurethane (PU) and lithium salt on the polyethylene separator. The robust and flexible separator matrix not only reduces the electrolyte thickness and improves the mobility of Li+, but more importantly provides a relatively regular thermal diffusion channel for SPE and reduces the external phonon scattering. Moreover, the introduction of EMIM:DCA successfully breaks the random intermolecular attraction of the PU polymer chain and significantly decreases phonon scattering to enhance the internal thermal conductivity of the polymer. Thus, the thermal conductivity of the as-obtained SPE increases by approximately six times, and the thermal runaway (TR) of the battery is effectively inhibited. This work demonstrates that optimizing thermal safety of the battery by phonon engineering sheds a new light on the design principle for high-safety Li-ion batteries.

5.
Cardiovasc Diabetol ; 23(1): 192, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844974

RESUMO

BACKGROUND: Cardiovascular disease (CVD) is closely associated with the triglyceride glucose (TyG) index and its related indicators, particularly its combination with obesity indices. However, there is limited research on the relationship between changes in TyG-related indices and CVD, as most studies have focused on baseline TyG-related indices. METHODS: The data for this prospective cohort study were obtained from the China Health and Retirement Longitudinal Study. The exposures were changes in TyG-related indices and cumulative TyG-related indices from 2012 to 2015. The K-means algorithm was used to classify changes in each TyG-related index into four classes (Class 1 to Class 4). Multivariate logistic regressions were used to evaluate the associations between the changes in TyG-related indices and the incidence of CVD. RESULTS: In total, 3243 participants were included in this study, of whom 1761 (54.4%) were female, with a mean age of 57.62 years at baseline. Over a 5-year follow-up, 637 (19.6%) participants developed CVD. Fully adjusted logistic regression analyses revealed significant positive associations between changes in TyG-related indices, cumulative TyG-related indices and the incidence of CVD. Among these changes in TyG-related indices, changes in TyG-waist circumference (WC) showed the strongest association with incident CVD. Compared to the participants in Class 1 of changes in TyG-WC, the odds ratio (OR) for participants in Class 2 was 1.41 (95% confidence interval (CI) 1.08-1.84), the OR for participants in Class 3 was 1.54 (95% CI 1.15-2.07), and the OR for participants in Class 4 was 1.94 (95% CI 1.34-2.80). Moreover, cumulative TyG-WC exhibited the strongest association with incident CVD among cumulative TyG-related indices. Compared to the participants in Quartile 1 of cumulative TyG-WC, the OR for participants in Quartile 2 was 1.33 (95% CI 1.00-1.76), the OR for participants in Quartile 3 was 1.46 (95% CI 1.09-1.96), and the OR for participants in Quartile 4 was 1.79 (95% CI 1.30-2.47). CONCLUSIONS: Changes in TyG-related indices are independently associated with the risk of CVD. Changes in TyG-WC are expected to become more effective indicators for identifying individuals at a heightened risk of CVD.


Assuntos
Biomarcadores , Glicemia , Doenças Cardiovasculares , Obesidade , Triglicerídeos , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/sangue , Estudos Prospectivos , Triglicerídeos/sangue , Incidência , Medição de Risco , China/epidemiologia , Glicemia/metabolismo , Obesidade/epidemiologia , Obesidade/diagnóstico , Obesidade/sangue , Idoso , Biomarcadores/sangue , Estudos Longitudinais , Fatores de Tempo , Prognóstico , Fatores de Risco de Doenças Cardíacas , Valor Preditivo dos Testes , Fatores de Risco
6.
Mol Cell Proteomics ; 23(6): 100784, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735538

RESUMO

Colorectal cancer (CRC) is characterized by high morbidity, high mortality, and limited response to immunotherapies. The peripheral immune system is an important component of tumor immunity, and enhancements of peripheral immunity help to suppress tumor progression. However, the functional alterations of the peripheral immune system in CRC are unclear. Here, we used mass spectrometry-based quantitative proteomics to establish a protein expression atlas for the peripheral immune system in CRC, including plasma and five types of immune cells (CD4+ T cells, CD8+ T cells, monocytes, natural killer cells, and B cells). Synthesizing the results of the multidimensional analysis, we observed an enhanced inflammatory phenotype in CRC, including elevated expression of plasma inflammatory proteins, activation of the inflammatory pathway in monocytes, and increased inflammation-related ligand-receptor interactions. Notably, we observed tumor effects on peripheral T cells, including altered cell subpopulation ratios and suppression of cell function. Suppression of CD4+ T cell function is mainly mediated by high expression levels of protein tyrosine phosphatases. Among them, the expression of protein tyrosine phosphatase receptor type J (PTPRJ) gradually increased with CRC progression; knockdown of PTPRJ in vitro could promote T cell activation, thereby enhancing peripheral immunity. We also found that the combination of leucine-rich α-2 glycoprotein 1 (LRG1) and apolipoprotein A4 (APOA4) had the best predictive ability for colorectal cancer and has the potential to be a biomarker. Overall, this study provides a comprehensive understanding of the peripheral immune system in CRC. It also offers insights regarding the potential clinical utilities of these peripheral immune characteristics as diagnostic indicators and therapeutic targets.


Assuntos
Neoplasias Colorretais , Proteômica , Humanos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Proteômica/métodos , Masculino , Feminino , Sistema Imunitário/metabolismo , Pessoa de Meia-Idade , Idoso , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia
7.
Materials (Basel) ; 17(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38730922

RESUMO

Hybrid bonded-bolted composite material interference connections significantly enhance the collaborative load-bearing capabilities of the adhesive layer and bolts, thus improving structural load-carrying capacity and fatigue life. So, these connections offer significant developmental potential and application prospects in aircraft structural assembly. However, interference causes damage to the adhesive layer and composite laminate around the holes, leading to issues with interface damage. In this study, we employed experimental and finite element methods. Initially, different interference-fit sizes were selected for bolt insertion to analyze the damage mechanism of the adhesive layer during interference-fit bolt installation. Subsequently, a finite element tensile model considering damage to the adhesive layer and composite laminate around the holes post-insertion was established. This study aimed to investigate damage in composite bonded-bolted hybrid joints, explore load-carrying rules and failure modes, and reveal the mechanisms of interference effects on structural damage and failure. The research results indicate that the finite element prediction model considering initial damage around the holes is more effective. As the interference-fit size increases, damage to the adhesive layer transitions from surface debonding to local cracking, while damage to the composite matrix shifts from slight compression failure to severe delamination and fiber-bending fracturing. The structural strength shows a trend of initially increasing and then decreasing, with the maximum strength observed at an interference-fit size of 1.1%.

8.
J Geriatr Cardiol ; 21(4): 431-442, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38800546

RESUMO

OBJECTIVE: To assess the feasibility and safety of the minimalistic approach to left atrial appendage occlusion (LAAO) guided by cardiac computed tomography angiography (CCTA). METHODS: Ninety consecutive patients who underwent LAAO, with or without CCTA-guided, were matched (1:2). Each step of the LAAO procedure in the computed tomography (CT) guidance group (CT group) was directed by preprocedural CT planning. In the control group, LAAO was performed using the standard method. All patients were followed up for 12 months, and device surveillance was conducted using CCTA. RESULTS: A total of 90 patients were included in the analysis, with 30 patients in the CT group and 60 matched patients in the control group. All patients were successfully implanted with Watchman devices. The mean ages for the CT group and the control group were 70.0 ± 9.4 years and 68.4 ± 11.9 years (P = 0.52), respectively. The procedure duration (45.6 ± 10.7 min vs. 58.8 ± 13.0 min, P < 0.001) and hospital stay (7.5 ± 2.4 day vs. 9.6 ± 2.8 day, P = 0.001) in the CT group was significantly shorter compared to the control group. However, the total radiation dose was higher in the CT group compared to the control group (904.9 ± 348.0 mGy vs. 711.9 ± 211.2 mGy, P = 0.002). There were no significant differences in periprocedural pericardial effusion (3.3% vs. 6.3%, P = 0.8) between the two groups. The rate of postprocedural adverse events (13.3% vs. 18.3%, P = 0.55) were comparable between both groups at 12 months follow-up. CONCLUSIONS: CCTA is capable of detailed LAAO procedure planning. Minimalistic LAAO with preprocedural CCTA planning was feasible and safe, with shortened procedure time and acceptable increased radiation and contras consumption. For patients with contraindications to general anesthesia and/or transesophageal echocardiography, this promising method may be an alternative to conventional LAAO.

9.
Pharmacol Res ; 204: 107209, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38740147

RESUMO

Considerable progress has recently been made in cancer immunotherapy, including immune checkpoint blockade, cancer vaccine, and adoptive T cell methods. The lack of effective targets is a major cause of the low immunotherapy response rate in colorectal cancer (CRC). Here, we used a proteogenomic strategy comprising immunopeptidomics, whole exome sequencing, and 16 S ribosomal DNA sequencing analyses of 8 patients with CRC to identify neoantigens and bacterial peptides that can serve as antitumor targets. This study directly identified several personalized neoantigens and bacterial immunopeptides. Immunoassays showed that all neoantigens and 5 of 8 bacterial immunopeptides could be recognized by autologous T cells. Additionally, T cell receptor (TCR) αß sequencing revealed the TCR repertoire of epitope-reactive CD8+ T cells. Functional studies showed that T cell receptor-T (TCR-T) could be activated by epitope pulsed lymphoblastoid cells. Overall, this study comprehensively profiled the CRC immunopeptidome, revealing several neoantigens and bacterial peptides with potential to serve as immunotherapy targets in CRC.


Assuntos
Antígenos de Neoplasias , Neoplasias Colorretais , Imunoterapia , Proteogenômica , Humanos , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/terapia , Neoplasias Colorretais/genética , Proteogenômica/métodos , Imunoterapia/métodos , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/genética , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Peptídeos/imunologia , Linfócitos T CD8-Positivos/imunologia
10.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167215, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38714267

RESUMO

Osteoarthritis (OA) is a prevalent joint degenerative disease, resulting in a significant societal burden. However, there is currently a lack of effective treatment option available. Previous studies have suggested that Botulinum toxin A (BONT/A), a macromolecular protein extracted from Clostridium Botulinum, may improve the pain and joint function in OA patients, but the mechanism remains elusive. This study was to investigate the impact and potential mechanism of BONT/A on OA in vivo and in vitro experiment. LPS increased the levels of ROS, Fe2+and Fe3+, as well as decreased GSH levels, the ratio of GSH / GSSH and mitochondrial membrane potential. It also enhanced the degeneration of extracellular matrix (ECM) and altered the ferroptosis-related protein expression in chondrocytes. BONT/A rescued LPS-induced decrease in collagen type II (Collagen II) expression and increase in matrix metalloproteinase 13 (MMP13), mitigated LPS-induced cytotoxicity in chondrocytes, abolished the accumulation of ROS and iron, upregulated GSH and the ratio of GSH/ GSSH, improved mitochondrial function, and promoted SLC7A11/GPX4 anti-ferroptosis system activation. Additionally, intra-articular injection of BONT/A inhibited the degradation of cartilage in OA model rats. This chondroprotective effect of BONT/A was reversed by erastin (a classical ferroptosis agonist) and enhanced by liproxstatin-1 (a classic ferroptosis inhibitor). Our research confirms that BONT/A alleviates the OA development by inhibiting the ferroptosis of chondrocytes, which revealed to be a potential therapeutic mechanism for BONT/A treating the OA.


Assuntos
Toxinas Botulínicas Tipo A , Condrócitos , Ferroptose , Osteoartrite , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Ferroptose/efeitos dos fármacos , Condrócitos/metabolismo , Condrócitos/efeitos dos fármacos , Condrócitos/patologia , Animais , Toxinas Botulínicas Tipo A/farmacologia , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Osteoartrite/patologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Ratos , Masculino , Lipopolissacarídeos/farmacologia , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Humanos
11.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612472

RESUMO

Birinapant, an antagonist of the inhibitor of apoptosis proteins, upregulates MHCs in tumor cells and displays a better tumoricidal effect when used in combination with immune checkpoint inhibitors, indicating that Birinapant may affect the antigen presentation pathway; however, the mechanism remains elusive. Based on high-resolution mass spectrometry and in vitro and in vivo models, we adopted integrated genomics, proteomics, and immunopeptidomics strategies to study the mechanism underlying the regulation of tumor immunity by Birinapant from the perspective of antigen presentation. Firstly, in HT29 and MCF7 cells, Birinapant increased the number and abundance of immunopeptides and source proteins. Secondly, a greater number of cancer/testis antigen peptides with increased abundance and more neoantigens were identified following Birinapant treatment. Moreover, we demonstrate the existence and immunogenicity of a neoantigen derived from insertion/deletion mutation. Thirdly, in HT29 cell-derived xenograft models, Birinapant administration also reshaped the immunopeptidome, and the tumor exhibited better immunogenicity. These data suggest that Birinapant can reshape the tumor immunopeptidome with respect to quality and quantity, which improves the presentation of CTA peptides and neoantigens, thus enhancing the immunogenicity of tumor cells. Such changes may be vital to the effectiveness of combination therapy, which can be further transferred to the clinic or aid in the development of new immunotherapeutic strategies to improve the anti-tumor immune response.


Assuntos
Apresentação de Antígeno , Dipeptídeos , Indóis , Masculino , Animais , Humanos , Terapia Combinada , Modelos Animais de Doenças
12.
Comput Biol Med ; 175: 108502, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38678943

RESUMO

OBJECTIVES: Musculoskeletal (MSK) tumors, given their high mortality rate and heterogeneity, necessitate precise examination and diagnosis to guide clinical treatment effectively. Magnetic resonance imaging (MRI) is pivotal in detecting MSK tumors, as it offers exceptional image contrast between bone and soft tissue. This study aims to enhance the speed of detection and the diagnostic accuracy of MSK tumors through automated segmentation and grading utilizing MRI. MATERIALS AND METHODS: The research included 170 patients (mean age, 58 years ±12 (standard deviation), 84 men) with MSK lesions, who underwent MRI scans from April 2021 to May 2023. We proposed a deep learning (DL) segmentation model MSAPN based on multi-scale attention and pixel-level reconstruction, and compared it with existing algorithms. Using MSAPN-segmented lesions to extract their radiomic features for the benign and malignant classification of tumors. RESULTS: Compared to the most advanced segmentation algorithms, MSAPN demonstrates better performance. The Dice similarity coefficients (DSC) are 0.871 and 0.815 in the testing set and independent validation set, respectively. The radiomics model for classifying benign and malignant lesions achieves an accuracy of 0.890. Moreover, there is no statistically significant difference between the radiomics model based on manual segmentation and MSAPN segmentation. CONCLUSION: This research contributes to the advancement of MSK tumor diagnosis through automated segmentation and predictive classification. The integration of DL algorithms and radiomics shows promising results, and the visualization analysis of feature maps enhances clinical interpretability.


Assuntos
Neoplasias Ósseas , Aprendizado Profundo , Imageamento por Ressonância Magnética , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Imageamento por Ressonância Magnética/métodos , Idoso , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/classificação , Algoritmos , Adulto , Interpretação de Imagem Assistida por Computador/métodos , Neoplasias Musculares/diagnóstico por imagem , Radiômica
13.
Nat Commun ; 15(1): 2033, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448427

RESUMO

Constraining the electrochemical reactivity of free solvent molecules is pivotal for developing high-voltage lithium metal batteries, especially for ether solvents with high Li metal compatibility but low oxidation stability ( <4.0 V vs Li+/Li). The typical high concentration electrolyte approach relies on nearly saturated Li+ coordination to ether molecules, which is confronted with severe side reactions under high voltages ( >4.4 V) and extensive exothermic reactions between Li metal and reactive anions. Herein, we propose a molecular anchoring approach to restrict the interfacial reactivity of free ether solvents in diluted electrolytes. The hydrogen-bonding interactions from the anchoring solvent effectively suppress excessive ether side reactions and enhances the stability of nickel rich cathodes at 4.7 V, despite the extremely low Li+/ether molar ratio (1:9) and the absence of typical anion-derived interphase. Furthermore, the exothermic processes under thermal abuse conditions are mitigated due to the reduced reactivity of anions, which effectively postpones the battery thermal runaway.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38498765

RESUMO

COVID-19, caused by the highly contagious SARS-CoV-2 virus, is distinguished by its positive-sense, single-stranded RNA genome. A thorough understanding of SARS-CoV-2 pathogenesis is crucial for halting its proliferation. Notably, the 3C- like protease of the coronavirus (denoted as 3CLpro) is instrumental in the viral replication process. Precise delineation of 3CLpro cleavage sites is imperative for elucidating the transmission dynamics of SARS-CoV-2. While machine learning tools have been deployed to identify potential 3CLpro cleavage sites, these existing methods often fall short in terms of accuracy. To improve the performances of these predictions, we propose a novel analytical framework, the Transformer and Deep Forest Fusion Model (TDFFM). Within TDFFM, we utilize the AAindex and the BLOSUM62 matrix to encode protein sequences. These encoded features are subsequently input into two distinct components: a Deep Forest, which is an effective decision tree ensemble methodology, and a Transformer equipped with a Multi-Level Attention Model (TMLAM). The integration of the attention mechanism allows our model to more accurately identify positive samples, thus enhancing the overall predictive performance. Evaluation on a test set demonstrates that our TDFFM achieves an accuracy of 0.955, an AUC of 0.980, and an F1-score of 0.367, substantiating the model's superior prediction capabilities.

15.
J Am Chem Soc ; 146(7): 4557-4569, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38345667

RESUMO

Intelligent utilization of the anionic redox reaction (ARR) in Li-rich cathodes is an advanced strategy for the practical implementation of next-generation high-energy-density rechargeable batteries. However, due to the intrinsic complexity of ARR (e.g., nucleophilic attacks), the instability of the cathode-electrolyte interphase (CEI) on a Li-rich cathode presents more challenges than typical high-voltage cathodes. Here, we manipulate CEI interfacial engineering by introducing an all-fluorinated electrolyte and exploiting its interaction with the nucleophilic attack to construct a gradient CEI containing a pair of fluorinated layers on a Li-rich cathode, delivering enhanced interfacial stability. Negative/detrimental nucleophilic electrolyte decomposition has been efficiently evolved to further reinforce CEI fabrication, resulting in the construction of LiF-based indurated outer shield and fluorinated polymer-based flexible inner sheaths. Gradient interphase engineering dramatically improved the capacity retention of the Li-rich cathode from 43 to 71% after 800 cycles and achieved superior cycling stability in anode-free and pouch-type full cells (98.8% capacity retention, 220 cycles), respectively.

16.
Mol Cell Proteomics ; 23(1): 100691, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072118

RESUMO

T cells play the most pivotal roles in antitumor immunity; the T-cell proteome and the differentially expressed proteins in the tumor immune microenvironment have rarely been identified directly from the clinical samples, especially for tumors that lack effective immunotherapy targets, such as colorectal cancer (CRC). In this study, we analyzed the protein expression pattern of the infiltrating T cells isolated from CRC patients using quantitative proteomics. CD4+ and CD8+ T cells were isolated from clinical samples and labeled by tandem mass tag reagents, and the differentially expressed proteins were quantified by mass spectrometry. The T-cell proteome profiling revealed dysfunctions in these tumor-infiltrating T cells. Specifically, antitumor immunity was suppressed because of differentially expressed metal ion transporters and immunity regulators. For the first time, lipocalin-2 (LCN2) was shown to be significantly upregulated in CD4+ T cells. Quantitative proteomic analysis of LCN2-overexpressed Jurkat cells showed that LCN2 damaged T cells by changes in iron transport. LCN2 induced T-cell apoptosis by reducing cellular iron concentration; moreover, the iron that was transported to the tumor microenvironment aided tumor cell proliferation, promoting tumor development. Meanwhile, LCN2 also influenced tumor progression through immune cytokines and cholesterol metabolism. Our results demonstrated that LCN2 has immunosuppressive functions that can promote tumor development; therefore, it is a potential immunotherapy target for CRC.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Humanos , Apoptose , Linfócitos T CD8-Positivos/metabolismo , Proliferação de Células , Ferro/metabolismo , Lipocalina-2/metabolismo , Proteoma/metabolismo , Proteômica , Microambiente Tumoral
17.
Integr Environ Assess Manag ; 20(3): 875-887, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37849019

RESUMO

Coordinated and stable development of economy-energy-environment (3E) systems represents a long-term strategy for the sustainable development of humankind. Following the research idea of "indicator system construction-3E system evaluation-obstacles identification-optimization management," this article innovatively constructs a multiangle and comparable methodology system for evaluation and optimized management of the 3E system and considers the core cities of three economic circles in China as cases for empirical research. The results show that all the coordination degree levels were of good or high quality, which was at the highest level in the country. The sustainability degree of the three cities showed an upward trend; of these, Beijing had the highest sustainability degree, followed by Guangzhou and Shanghai. Obstacle degree analysis shows that technology investment and energy factors were common factors hindering sustainable development of the 3E systems of the three cities, and each city also had its own unique factors that acted as obstacles. On this basis, this article formulates region-specific policy recommendations in order to provide a useful reference for top-level design for the government. Integr Environ Assess Manag 2024;20:875-887. © 2023 SETAC.

18.
Angew Chem Int Ed Engl ; 63(6): e202316790, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38116869

RESUMO

Electrolyte engineering is a fascinating choice to improve the performance of Li-rich layered oxide cathodes (LRLO) for high-energy lithium-ion batteries. However, many existing electrolyte designs and adjustment principles tend to overlook the unique challenges posed by LRLO, particularly the nucleophilic attack. Here, we introduce an electrolyte modification by locally replacing carbonate solvents in traditional electrolytes with a fluoro-ether. By benefit of the decomposition of fluoro-ether under nucleophilic O-related attacks, which delivers an excellent passivation layer with LiF and polymers, possessing rigidity and flexibility on the LRLO surface. More importantly, the fluoro-ether acts as "sutures", ensuring the integrity and stability of both interfacial and bulk structures, which contributed to suppressing severe polarization and enhancing the cycling capacity retention from 39 % to 78 % after 300 cycles for the 4.8 V-class LRLO. This key electrolyte strategy with comprehensive analysis, provides new insights into addressing nucleophilic challenge for high-energy anionic redox related cathode systems.

19.
ACS Appl Mater Interfaces ; 15(48): 55570-55586, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38058105

RESUMO

Recently, aqueous zinc-ion batteries (ZIBs) have become increasingly attractive as grid-scale energy storage solutions due to their safety, low cost, and environmental friendliness. However, severe dendrite growth, self-corrosion, hydrogen evolution, and irreversible side reactions occurring at Zn anodes often cause poor cyclability of ZIBs. This work develops a synergistic strategy to stabilize the Zn anode by introducing a molybdenum dioxide coating layer on Zn (MoO2@Zn) and Tween 80 as an electrolyte additive. Due to the redox capability and high electrical conductivity of MoO2, the coating layer can not only homogenize the surface electric field but also accommodate the Zn2+ concentration field in the vicinity of the Zn anode, thereby regulating Zn2+ ion distribution and inhibiting side reactions. MoO2 coating can also significantly enhance surface hydrophilicity to improve the wetting of electrolyte on the Zn electrode. Meanwhile, Tween 80, a surfactant additive, acts as a corrosion inhibitor, preventing Zn corrosion and regulating Zn2+ ion migration. Their combination can synergistically work to reduce the desolvation energy of hydrated Zn ions and stabilize the Zn anodes. Therefore, the symmetric cells of MoO2@Zn∥MoO2@Zn with optimal 1 mM Tween 80 additive in 1 M ZnSO4 achieve exceptional cyclability over 6000 h at 1 mA cm-2 and stability (>700 h) even at a high current density (5 mA cm-2). When coupling with the VO2 cathode, the full cell of MoO2@Zn∥VO2 shows a higher capacity retention (82.4%) compared to Zn∥VO2 (57.3%) after 1000 cycles at 5 A g-1. This study suggests a synergistic strategy of combining surface modification and electrolyte engineering to design high-performance ZIBs.

20.
Mol Neurobiol ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038880

RESUMO

Cerebral ischemia, also known as ischemic stroke, accounts for nearly 85% of all strokes and is the leading cause of disability worldwide. Due to disrupted blood supply to the brain, cerebral ischemic injury is trigged by a series of complex pathophysiological events including excitotoxicity, oxidative stress, inflammation, and cell death. Currently, there are few treatments for cerebral ischemia owing to an incomplete understanding of the molecular and cellular mechanisms. Accumulated evidence indicates that various types of programmed cell death contribute to cerebral ischemic injury, including apoptosis, ferroptosis, pyroptosis and necroptosis. Among these, necroptosis is morphologically similar to necrosis and is mediated by receptor-interacting serine/threonine protein kinase-1 and -3 and mixed lineage kinase domain-like protein. Necroptosis inhibitors have been shown to exert inhibitory effects on cerebral ischemic injury and neuroinflammation. In this review, we will discuss the current research progress regarding necroptosis in cerebral ischemia as well as the application of necroptosis inhibitors for potential therapeutic intervention in ischemic stroke.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA