Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
New Phytol ; 243(2): 580-590, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38488228

RESUMO

Non-structural carbohydrates (NSCs), as the labile fraction and dominant carbon currency, are essential mediators of plant adaptation to environments. However, whether and how NSC coordinates with plant economic strategy frameworks, particularly the well-recognized leaf economics spectrums (LES) and root economics space (RES), remains unclear. We examined the relationships between NSC and key plant economics traits in leaves and fine roots across 90 alpine coniferous populations on the Tibetan Plateau, China. We observed contrasting coordination of NSC with economics traits in leaves and roots. Leaf total NSC and soluble sugar aligned with the leaf economic spectrum, conveying a trade-off between growth and storage in leaves. However, NSC in roots was independent of the root economic spectrum, but highly coordinated with root foraging, with more starch and less sugar in forage-efficient, thinner roots. Further, NSC-trait coordination in leaves and roots was, respectively, driven by local temperature and precipitation. These findings highlight distinct roles of NSC in shaping the above- and belowground multidimensional economics trait space, and NSC-based carbon economics provides a mechanistic understanding of how plants adapt to heterogeneous habitats and respond to environmental changes.


Assuntos
Florestas , Folhas de Planta , Raízes de Plantas , Traqueófitas , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Traqueófitas/fisiologia , Metabolismo dos Carboidratos , Carboidratos , Característica Quantitativa Herdável , Temperatura
2.
Diabetol Metab Syndr ; 16(1): 59, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38438892

RESUMO

BACKGROUND: Observational studies have indicated an association between diabetes mellitus (DM), glycemic traits, and the occurrence of Parkinson's disease (PD). However, the complex interactions between these factors and the presence of a causal relationship remain unclear. Therefore, we aim to systematically assess the causal relationship between diabetes, glycemic traits, and PD onset, risk, and progression. METHOD: We used two-sample Mendelian randomization (MR) to investigate potential associations between diabetes, glycemic traits, and PD. We used summary statistics from genome-wide association studies (GWAS). In addition, we employed multivariable Mendelian randomization to evaluate the mediating effects of anti-diabetic medications on the relationship between diabetes, glycemic traits, and PD. To ensure the robustness of our findings, we performed a series of sensitivity analyses. RESULTS: In our univariable Mendelian randomization (MR) analysis, we found evidence of a causal relationship between genetic susceptibility to type 1 diabetes (T1DM) and a reduced risk of PD (OR = 0.9708; 95% CI: 0.9466, 0.9956; P = 0.0214). In our multivariable MR analysis, after considering the conditions of anti-diabetic drug use, this correlation disappeared with adjustment for potential mediators, including anti-diabetic medications, insulin use, and metformin use. CONCLUSION: Our MR study confirms a potential protective causal relationship between genetically predicted type 1 diabetes and reduced risk of PD, which may be mediated by factors related to anti-diabetic medications.

3.
Front Pharmacol ; 14: 1198335, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37388445

RESUMO

Background: The microbiota-gut-brain axis has been proposed as a potential therapeutic target of PD. The effects of curcumin against Parkinson's disease have been demonstrated; however, its neuroprotective mechanisms remain unknown. Our study investigated the potential mechanisms through which curcumin ameliorates Parkinson's disease via the microbiota-gut-brain axis. Methods: Mice were randomly divided into four groups: control, Curcumin, MPTP, and MPTP + Curcumin. Motor deficits and gastrointestinal dysfunction were assessed using behavioral test, intestinal motility test, and fecal parameter measurement. The loss of dopaminergic neurons and intestinal barrier function was measured using Western blot and immunofluorescence. Shotgun metagenomic sequencing and LC-MS were parallelly performed on mice feces to investigate alterations in microbiota and metabolites. Results: Curcumin alleviated motor deficits and the loss of dopaminergic neurons in MPTP-induced mice. Curcumin ameliorated gastrointestinal and intestinal barrier dysfunctions in MPTP-induced mice. Curcumin reduced gut microbial dysbiosis and modulated carbohydrate metabolism in MPTP-induced mice. Curcumin restored short-chain fatty acid (SCFA) profiles in MPTP-induced mice. Conclusion: Concurrently, these results indicate that curcumin inhibits Parkinson's disease by regulating the gut microbiota and short-chain fatty acids.

4.
Tree Physiol ; 43(9): 1479-1492, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37209171

RESUMO

Root exudation fulfills fundamental roles in regulating carbon (C)-nutrient cycling in forest ecosystems, yet the main ecological drivers of root exudation and underlying mechanisms in forests under natural gradients remain poorly understood. Here, we investigated the intraspecific variation of root exudation rates in two alpine coniferous forests (Abies faxoniana Rehder et Wilson and Abies georgei Orr) along two elevation gradients on the eastern Tibetan Plateau. Meanwhile, the fine root traits and associated climate and soil parameters were assessed to examine the effects of elevation-dependent changes in climatic and soil nutrient conditions on root exudation. Results showed that root exudation rates decreased with increasing elevation and were positively correlated with mean air temperature. However, the relationships of root exudation with soil moisture and soil nitrogen availability were not significant. The structural equation model (SEM) further revealed that air temperature affected root exudation both directly and indirectly through the effects on fine root morphology and biomass, implying that the adaption of root C allocation and fine root morphological traits to low temperatures primarily resulted in declined root exudation at higher elevations. These results highlight the perceived importance of temperature in determining the elevational variation of root exudation in alpine coniferous forests, which has foreseeably great implications for the exudate-mediated ecosystem C and nutrient processes in the face of drastic warming on the eastern Tibetan Plateau.


Assuntos
Abies , Traqueófitas , Ecossistema , Temperatura , Tibet , Florestas , Solo
5.
BMC Cancer ; 23(1): 328, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37038185

RESUMO

BACKGROUND: DTL has been found to be related with multiple cancers. However, comprehensive analyses, which identify the prediction value of DTL in diagnosis, prognosis, immune infiltration and treatment, have rarely been reported so far. METHODS: Combined with the data online databases, the gene expression, gene mutation, function enrichment and the correlations with the immunity status and clinical indexes of DTL were analyzed. Expression of DTL and the degree of immune cell infiltration were examined by immunofluorescence (IF) and immunohistochemistry (IHC) and analyzed by statistical analysis. Furthermore, the influences of DTL on the cell cycle, cell proliferation and apoptosis were detected by live cell imaging, IF and flow cytometric (FC) analysis. Genomic stability assays were conducted by chromosome slide preparation. RESULTS: DTL was widely expressed in various cells and tissues, while it was overexpressed in tumor tissues except acute myeloid leukemia (LAML). Pan-cancer bioinformatics analysis showed that the expression of DTL was correlated with the prognosis, immunotherapy, and clinical indexes in various cancers. In addition, gene set enrichment analysis (GSEA) uncovered that DTL was enriched in oocyte meiosis, pyrimidine metabolism, the cell cycle, the G2M checkpoint, mTORC1 signaling and E2F targets. Furthermore, the overexpression of DTL, and its association with immune cell infiltration and clinical indexes in liver hepatocellular carcinoma (LIHC), bladder urothelial carcinoma (BLCA) and stomach adenocarcinoma (STAD) were verified in our study. It was also verified that overexpression of DTL could regulate the cell cycle, promote cell proliferation and cause genomic instability in cultured cells, which may be the reason why DTL plays a role in the occurrence, progression and treatment of cancer. CONCLUSIONS: Collectively, this study suggested that DTL is of clinical value in the diagnosis, prognosis and treatment of various cancers, and may be a potential biomarker in certain cancers.


Assuntos
Carcinoma Hepatocelular , Carcinoma de Células de Transição , Neoplasias Hepáticas , Neoplasias da Bexiga Urinária , Humanos , Prognóstico , Biomarcadores , Imunoterapia , Proteínas Nucleares
6.
Sci Total Environ ; 875: 162701, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36906017

RESUMO

Root activity regulates rhizosphere soil carbon (C) dynamics, thereby profoundly affecting soil C sequestration and associated climate feedback. However, whether and how rhizosphere soil organic C (SOC) sequestration responds to atmospheric N deposition remains unclear. We distinguished and quantified the direction and magnitude of soil C sequestration between the rhizosphere and bulk soil of a spruce (Picea asperata Mast.) plantation after 4-year field N additions. Moreover, the contribution of microbial necromass C to SOC accumulation under N addition was further compared between the two soil compartments, considering the crucial role of microbial necromass in soil C formation and stabilization. The results showed that although both the rhizosphere and bulk soil facilitated SOC accumulation in response to N addition, the rhizosphere exerted a greater C sequestration than that of bulk soil. Specifically, compared to the control, SOC content increased 15.03 mg/g and 4.22 mg/g in the rhizosphere and bulk soil under N addition, respectively. Further numerical model analysis showed that SOC pool in the rhizosphere increased by 33.39 % induced by N addition, which was nearly four times of that in the bulk soil (7.41 %). The contribution of increased microbial necromass C to SOC accumulation induced by N addition was significantly higher in the rhizosphere (38.76 %) than that in the bulk soil (31.31 %), which was directly related to the greater accumulation of fungal necromass C in the rhizosphere. Our findings highlighted the vital role of the rhizosphere processes in regulating soil C dynamics under elevating N deposition, and also provided a clear evidence for importance of the microbial-derived C in the SOC sequestration from the rhizosphere perspective.


Assuntos
Rizosfera , Solo , Nitrogênio/análise , Florestas , Carbono , Microbiologia do Solo , Sequestro de Carbono
7.
Sci Total Environ ; 849: 157906, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-35944647

RESUMO

Increasing atmospheric nitrogen (N) deposition has resulted in phosphorus (P) limitation in multiple terrestrial ecosystems, yet how plants coordinate aboveground and belowground strategies to adapt to such P deficiency remains unclear. In this study, we conducted a field N fertilization experiment in two alpine coniferous plantations (Picea asperata Mast. and Pinus armandii Franch.) with different soil N availability on the eastern Tibetan Plateau of China, to examine N addition effects on plant nutrient limiting status and plant adaptive strategies corresponding to aboveground P conservation and belowground P acquisition. The results showed that N addition aggravated P deficiency in both plantations, as indicated by decreased needle P concentrations and increased N:P ratios, and that plant strategies for addressing such P deficiency differed in the two plantations with different initial soil N availabilities. In the P. asperata plantation with relatively high N availability, significantly enhanced needle phosphatase activity and shifts in P fraction allocation (downregulation of the structural P fraction and increased allocation to the residual P fraction) co-occurred with increased rhizosphere effects on phosphatase activity under N addition, indicating a synergistic strategy of aboveground P conservation and belowground P mining to alleviate P deficiency. In the P. armandii plantation with relatively low N availability, however, N addition only enhanced phosphatase activity and increased allocation to residual P fraction in the aboveground but had little effect on belowground P acquisition-associated traits, suggesting a decoupling relationship between aboveground P conservation and belowground P acquisition. This study highlights the vital significance of initial soil nutrient availability in regulating the coordination of aboveground and belowground strategic alternatives, emphasizing the need to integrate soil nutrient conditions for a holistic understanding of forest adaptation to anthropogenic N enrichment.


Assuntos
Ecossistema , Traqueófitas , Biomassa , Florestas , Nitrogênio/análise , Monoéster Fosfórico Hidrolases , Fósforo , Plantas , Solo/química
8.
Glob Chang Biol ; 28(16): 4947-4961, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35582981

RESUMO

Plant roots and associated mycorrhizae exert a large influence on soil carbon (C) cycling. Yet, little was known whether and how roots and ectomycorrhizal (ECM) extraradical mycelia differentially contribute to soil organic C (SOC) accumulation in alpine forests under increasing nitrogen (N) deposition. Using ingrowth cores, the relative contributions of the root pathway (RP; i.e., roots and rhizosphere processes) and mycelium pathway (MP; i.e., extraradical mycelia and hyphosphere processes) to SOC accumulation were distinguished and quantified in an ECM-dominated forest receiving chronic N addition (25 kg N ha-1  year-1 ). Under the non-N addition, the RP facilitated SOC accumulation, although the MP reduced SOC accumulation. Nitrogen addition enhanced the positive effect of RP on SOC accumulation from +18.02 to +20.55 mg C g-1 but counteracted the negative effect of MP on SOC accumulation from -5.62 to -0.57 mg C g-1 , compared with the non-N addition. Compared with the non-N addition, the N-induced SOC accumulation was 1.62-2.21 and 3.23-4.74 mg C g-1 , in the RP and the MP, respectively. The greater contribution of MP to SOC accumulation was mainly attributed to the higher microbial C pump (MCP) efficacy (the proportion of increased microbial residual C to the increased SOC under N addition) in the MP (72.5%) relative to the RP (57%). The higher MCP efficacy in the MP was mainly associated with the higher fungal metabolic activity (i.e., the greater fungal biomass and N-acetyl glucosidase activity) and greater binding efficiency of fungal residual C to mineral surfaces than those of RP. Collectively, our findings highlight the indispensable role of mycelia and hyphosphere processes in the formation and accumulation of stable SOC in the context of increasing N deposition.


Assuntos
Carbono , Micorrizas , Florestas , Micélio/química , Nitrogênio/análise , Solo , Microbiologia do Solo
9.
Pharmaceuticals (Basel) ; 16(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36678536

RESUMO

Parkinson's disease (PD) is a chronic progressive neurodegenerative disease commonly seen in aged people, in which gastrointestinal dysfunction is the most common nonmotor symptom and the activation of the gut-brain axis by intestinal inflammation may contribute to the pathogenesis of PD. In a previous study, curcumin was considered neuroprotective in PD, and this neuroprotective mechanism may act by inhibiting intestinal inflammation. Therefore, the aim of this study was to evaluate the effect of curcumin on motor dysfunction and the loss of dopaminergic neurons in a PD mouse model, induced by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) using open field test and pole test behavioral assessments and the immunofluorescence and Western blot methods. Moreover, the effects of curcumin on gastrointestinal dysfunction, gastric barrier function, pro-inflammatory cytokines, and the SIRT1/NRF2 pathway in intestinal tissues in a PD mouse model were assessed using fecal parameters and intestinal dynamics, immunofluorescence, ELISA, and Western blot. A motor impairment study of an MPTP-induced mouse group prior to treatment with curcumin had a lower total movement distance and a slow average speed, while there was no statistical difference in the curcumin group. After treatment with curcumin, the total movement distance and average speed improved, the tyrosine hydroxylase (TH) rate in the substantia nigra pars compacta (SNpc) and striatum were reduced, the pyroptosis of AIM2 and caspase-1 activations were inhibited, and intestinal inflammatory factors and intestinal inflammation were reduced. Curcumin improved gastrointestinal disorders and gastrointestinal barrier function in the MPTP-induced mice and reversed MPTP-induced motor dysfunction and dopaminergic neuron loss in mice. The above effects may be partly dependent on curcumin activation of the SIRT1/NRF2 pathway in the colon. This study provides a potential opportunity to develop new preventive measures and novel therapeutic approaches that could target the gut-brain axis in the context of PD and provide a new intervention in the treatment of Parkinson's disease.

10.
Ying Yong Sheng Tai Xue Bao ; 27(2): 395-402, 2016 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-27396110

RESUMO

Based on the fine root samples of the first and second generations of poplar (Populus x euramericana ' Neva'), this study examined the response of quantitative and morphological traits of fine roots of different orders and the difference between generations. The results showed that, the quantitative traits of fine roots, such as root length, root surface area and root biomass, presented obvious seasonal variation, and the fine root traits had obvious difference among root orders. The quantitative traits of lower-order fine roots showed significant seasonal difference, and the fine root biomass increased in the growing season and then decreased significantly. The specific root length (SRL) of higher-order roots also showed significant change with season, while the root length density (RLD) and root tissue density (RTD) changed a little. The successive rotation resulted in the significant increase of root length, root biomass, SRL and RLD of 1-2 orders in the growing season. The quantitative traits of first order root significantly positively correlated with soil temperature and moisture, and significantly negatively correlated with the soil organic matter and soil available nitrogen content. However, the quantitative traits of second order root only showed significant correlation with soil nutrient content. The seasonal dynamics of poplar fine roots and the difference between successive rotation plantations implied carbon investment change of poplar to roots. Soil nutrient deficiency induced more carbon investment into roots, and this carbon allocation pattern might affect the aboveground productivity of poplar plantation.


Assuntos
Agricultura Florestal/métodos , Raízes de Plantas/crescimento & desenvolvimento , Populus/crescimento & desenvolvimento , Estações do Ano , Biomassa , Carbono/análise , Nitrogênio/análise , Fenótipo , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA