Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Theor Exp Plant Physiol ; 36(3): 423-437, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-39132627

RESUMO

Motor cognition involves the process of planning and executing goal-directed movements and recognizing, anticipating, and interpreting others' actions. Motor cognitive functions are generally associated with the presence of a brain and are ascribed only to humans and other animal species. A growing body of evidence suggests that aneural organisms, like climbing plants, exhibit behaviors driven by the intention to achieve goals, challenging our understanding of cognition. Here, we propose an inclusive perspective under motor cognition to explain climbing plants' behavior. We will first review our empirical research based on kinematical analysis to understand movement in pea plants. Then, we situate this empirical research within the current theoretical debate aimed at extending the principles of cognition to aneural organisms. A novel comparative perspective that considers the perception-action cycle, involving transforming perceived environmental elements into intended movement patterns, is provided.

2.
Plants (Basel) ; 13(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38794459

RESUMO

Pea plants (Pisum sativum L.) can perceive the presence of potential supports in the environment and flexibly adapt their behavior to clasp them. How pea plants control and perfect this behavior during growth remains unexplored. Here, we attempt to fill this gap by studying the movement of the apex and the tendrils at different leaves using three-dimensional (3D) kinematical analysis. We hypothesized that plants accumulate information and resources through the circumnutation movements of each leaf. Information generates the kinematical coordinates for the final launch towards the potential support. Results suggest that developing a functional approach to grasp movement may involve an interactive trial and error process based on continuous cross-talk across leaves. This internal communication provides evidence that plants adopt plastic responses in a way that optimally corresponds to support search scenarios.

3.
AoB Plants ; 16(1): plad088, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38192569

RESUMO

In life, it is common for almost every kind of organism to interact with one another. In the human realm, such interactions are at the basis of joint actions, when two or more agents syntonize their actions to achieve a common goal. Shared intentionality is the theoretical construct referring to the suite of abilities that enable such coordinated and collaborative interactions. While shared intentionality has become an important concept in research on social cognition, there is controversy surrounding its evolutionary origins. An aspect still unexplored but promising to bring new insights into this open debate is the study of aneural organisms. To fill this gap, here we investigate whether climbing plants can act jointly to achieve a common goal, i.e. reaching the light. We examined Pisum Sativum plants growing intertwined when there is a need to climb but a potential support is not present in the environment. Three-dimensional kinematic analysis of their movement revealed a coordinated and complementary behaviour. They tend to coordinate their movement in time and space to achieve a joint climbing. By deliberately extending the context in which a joint action takes place, we pay tribute to the complex nature of this social phenomenon. The next challenge for the field of joint action is to generate a perspective that links coordination mechanisms to an evolutionary framework across taxa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA