Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 269
Filtrar
1.
PLoS One ; 19(9): e0309714, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39226268

RESUMO

As a critical component in mechanical systems, the operational status of rolling bearings plays a pivotal role in ensuring the stability and safety of the entire system. However, in practical applications, the fault diagnosis of rolling bearings often encounters limitations due to the constraint of sample size, leading to suboptimal diagnostic accuracy. This article proposes a rolling bearing fault diagnosis method based on an improved denoising diffusion probability model (DDPM) to address this issue. The practical value of this research lies in its ability to address the limitation of small sample sizes in rolling bearing fault diagnosis. By leveraging DDPM to generate one-dimensional vibration data, the proposed method significantly enriches the datasets and consequently enhances the generalization capability of the diagnostic model. During the model training process, we innovatively introduce the feature differences between the original vibration data and the predicted vibration data generated based on prediction noise into the loss function, making the generated data more directional and targeted. In addition, this article adopts a one-dimensional convolutional neural network (1D-CNN) to construct a fault diagnosis model to more accurately extract and focus on key feature information related to faults. The experimental results show that this method can effectively improve the accuracy and reliability of rolling bearing fault diagnosis, providing new ideas and methods for fault detection and prevention in industrial applications. This advancement in diagnostic technology has the potential to significantly reduce the risk of system failures, enhance operational efficiency, and lower maintenance costs, thus contributing significantly to the safety and efficiency of mechanical systems.


Assuntos
Redes Neurais de Computação , Algoritmos , Vibração , Modelos Teóricos
2.
ACS Appl Mater Interfaces ; 16(34): 45473-45486, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39148460

RESUMO

Currently, multifunction has become an essential direction of personal protective equipment (PPE), but achieving the protective effect, flexibility, physiological comfort, and intelligent application of PPE simultaneously is still a challenge. Herein, inspired by the meso-structure of rhinoceros skin, a novel strategy is proposed by compounding an ammonium sulfate ((NH4)2SO4) solution soaked gelatin hydrogel with the high weight fraction and vertically interwoven Kevlar fibers to manufacture a flexible and wearable composite with enhanced puncture resistance and strain-sensing properties. After (NH4)2SO4 solution immersion, the hydrogel's tensile strength, toughness, and fracture strain were up to 3.77 MPa, 4.26 MJ/m3, and 305.19%, respectively, indicating superior mechanical properties. The Kevlar/hydrogel composites revealed excellent puncture resistance (quasi-static of 132.06 N and dynamic of 295.05 N), flexibility (138.13 mN/cm), and air and moisture permeability (17.83 mm/s and 2092.73 g m-2 day-1), demonstrating a favorable balance between the protective effect and wearing comfort even after 7 days of environmental exposure. Meanwhile, salt solution immersion endowed the composite with excellent strain-sensing properties at various bending angles (30-90°) and frequencies (0.25-1 Hz) and allowed it to monitor different human motions directly in real-time. The rhinoceros-skin-inspired Kevlar/hydrogel composites provide a simple and economical solution for antipuncture materials that combine high protective effects, a comfortable wearing experience, and good strain-sensing properties, promising multifunctional PPE in the future.


Assuntos
Hidrogéis , Dispositivos Eletrônicos Vestíveis , Hidrogéis/química , Humanos , Equipamento de Proteção Individual , Resistência à Tração , Animais , Gelatina/química , Materiais Biomiméticos/química
3.
J Sports Sci ; : 1-9, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39172868

RESUMO

A tiebreak in tennis is one of the critical moments where players are expected to excel under mental pressure and maintain high level of performance. Despite the importance of tiebreak points, research exploring the performance of male and female players during such match phrase remains limited. This study aimed to investigate i) the overall tiebreak performance of male and female players in relation to the outcome, ii) to examine their point-level performance by considering different contextual variables. A total of 535 tiebreaks comprising 6380 points from the 2016-2021 US Open men's and women's singles matches were collected. The difference in match performance between winning and losing players within the entire tiebreak game was explored. A subsequent decision tree analysis was then used to analyse the effect of the contextual and performance variables on tiebreak point-by-point outcome. The results showed that male and female Winning players outperformed the Losing players in 1st Serve, Serve Width and Net approach performance. The analysis of point-level performance showed that Net point, Score scene, and Point server substantially impacted tennis players' tiebreak outcome. These findings provide valuable insight for coaches and players, informing tiebreak tactics tailoring and training in relevance to different match status.

4.
Adv Sci (Weinh) ; 11(34): e2400486, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38978328

RESUMO

The risk for suffering immune checkpoint inhibitors (ICIs)-associated myocarditis increases in patients with pre-existing conditions and the mechanisms remain to be clarified. Spatial transcriptomics, single-cell RNA sequencing, and flow cytometry are used to decipher how anti-cytotoxic T lymphocyte antigen-4 m2a antibody (anti-CTLA-4 m2a antibody) aggravated cardiac injury in experimental autoimmune myocarditis (EAM) mice. It is found that anti-CTLA-4 m2a antibody increases cardiac fibroblast-derived C-X-C motif chemokine ligand 1 (Cxcl1), which promots neutrophil infiltration to the myocarditic zones (MZs) of EAM mice via enhanced Cxcl1-Cxcr2 chemotaxis. It is identified that the C-C motif chemokine ligand 5 (Ccl5)-neutrophil subpopulation is responsible for high activity of cytokine production, adaptive immune response, NF-κB signaling, and cellular response to interferon-gamma and that the Ccl5-neutrophil subpopulation and its-associated proinflammatory cytokines/chemokines promoted macrophage (Mφ) polarization to M1 Mφ. These altered infiltrating landscape and phenotypic switch of immune cells, and proinflammatory factors synergistically aggravated anti-CTLA-4 m2a antibody-induced cardiac injury in EAM mice. Neutralizing neutrophils, Cxcl1, and applying Cxcr2 antagonist dramatically alleviates anti-CTLA-4 m2a antibody-induced leukocyte infiltration, cardiac fibrosis, and dysfunction. It is suggested that Ccl5-neutrophil subpopulation plays a critical role in aggravating anti-CTLA-4 m2a antibody-induced cardiac injury in EAM mice. This data may provide a strategic rational for preventing/curing ICIs-associated myocarditis.


Assuntos
Doenças Autoimunes , Quimiocina CCL5 , Modelos Animais de Doenças , Miocardite , Animais , Camundongos , Miocardite/imunologia , Doenças Autoimunes/imunologia , Quimiocina CCL5/imunologia , Quimiocina CCL5/metabolismo , Quimiocina CCL5/genética , Infiltração de Neutrófilos/efeitos dos fármacos , Antígeno CTLA-4/imunologia , Masculino , Traumatismos Cardíacos/imunologia , Traumatismos Cardíacos/induzido quimicamente
5.
Front Med (Lausanne) ; 11: 1416173, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994345

RESUMO

Introduction: Previous studies have demonstrated that frailty is associated with depressive symptoms among older people and significantly increase the risk of difficulty in activities of daily living (ADL). However, uncertainties remain regarding the mechanisms behind such relationship. The aim of this study was to investigate the mediating effect of ADL in the relationship between frailty and depressive symptoms among older adults in China, and to explore to what extend sleep duration moderated the association between ADL and depressive symptoms. Methods: In this study, we carried out cross-sectional descriptive analysis and 1,429 participants were included in the analysis. A survey was conducted using questionnaires and instruments measuring frailty, depressive symptoms, ADL and sleep duration. Bootstrap analyses served to explore the impact of ADL in mediating frailty and depressed symptoms, as well as the effect of sleep duration in moderating ADL and depressive symptoms. Results: Compared to the robust group, the mediating effects of ADL between frailty and depressive symptoms were significant in the prefrail group and the frail group. The interaction term between sleep duration and ADL was significantly presented in the regression on depressive symptoms. Specifically, the Johnson-Neyman technique determined a range from 8.31 to 10.19 h for sleep duration, within which the detrimental effect of frailty on depressive symptoms was offset. Conclusion: Sleep duration moderated the indirect effect of ADL on the association between frailty and depressive symptoms. This provides support for unraveling the underlying mechanism of the association between frailty and depressive symptoms. Encouraging older adults to enhance ADL and obtain appropriate sleep duration might improve depressive symptoms for older adults with frailty and prefrailty.

6.
Br J Clin Pharmacol ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958222

RESUMO

AIMS: Cefoperazone is commonly used off-label in the treatment of bacterial meningitis and sepsis in children, and the pharmacokinetic (PK) data are limited in this vulnerable population. The goal of this study was to develop a physiologically based pharmacokinetic (PBPK) model to predict pediatric cefoperazone exposure for rational dosing recommendations. METHODS: A cefoperazone PBPK model for adults was first constructed using Simcyp V22 simulator. Subsequently, the model was extended to children based on the built in age-dependent physiological parameters, while the drug characteristics remained unchanged. The verified pediatric PBPK model was then utilized to assess the rationality of the common dosing regimens for children at different age groups. RESULTS: Cefoperazone PBPK model included elimination via biliary excretion, glomerular filtration, and organic anion transporter 3 (OAT3)-mediated tubular secretion. 95.2% of the observed mean concentrations and 100% of the area under the plasma drug concentration-time curve (AUC) and peak concentration (Cmax) in adults were within a twofold range of model mean predictions. Good predictive accuracy was also observed in children, including neonates. 50 mg/kg q12h cefoperazone demonstrated effective target attainment in virtual term neonates (<1 month) when the MIC was ≤1 mg/L, adhering to the stringent PK/PD target of 75% fT > MIC. 37.5 mg/kg q12h cefoperazone achieved the common 50% fT > MIC target for an MIC ≤ 0. 25 mg/L in virtual pediatric patients ranging from 1 month to 18 years of age. CONCLUSIONS: A pediatric PBPK model was developed for cefoperazone, and it could serve as the basis for deriving rational dosing regimens in children.

7.
Dalton Trans ; 53(30): 12710-12719, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39017632

RESUMO

Constructing an S-scheme system with highly active catalysts is a significant approach for improving the separation of photoinduced carriers to solve the related environmental aggravation. In this study, a well-designed S-scheme AgVO3/CaIn2S4 photocatalyst was synthesized for water purification by in situ growing CaIn2S4 nanocrystals on AgVO3 nanorod surfaces. The optimized AgVO3/CaIn2S4 heterostructure demonstrates an enhanced photocatalytic efficiency (94.1%) toward tetracycline hydrochloride (TCH) degradation compared with bare AgVO3 (42.6%) and CaIn2S4 (81.6%). The significant enhancement of photocatalytic activity is attributed to the S-scheme charge transfer mechanism in the AgVO3/CaIn2S4 heterostructure, which effectively directs photogenerated charge migration, boosts charge transfer, and preserves the high redox capacity of photoexcited electrons and holes on different active sites. This study is expected to offer insights into strategically designing and preparing S-scheme heterojunction photocatalysts to improve water purification.

8.
Lab Med ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38843461

RESUMO

OBJECTIVE: We report a rare case of acute hemolytic reactions caused by immunoglobulin (Ig)M anti-M antibody and present a literature review. CASE REPORT: A 61-year-old male patient who underwent blood transfusion developed fever, chills, soy sauce-colored urine, and changes in laboratory test results, including persistently decreased hemoglobin levels, neutrophilia, elevated lactate dehydrogenase level, acute kidney injury, mild acute liver injury, and activation of the coagulation system, indicating acute hemolytic transfusion reaction (AHTR). Antibody screening and major crossmatching results indicated weak positive at 37°C for both posttransfusion and pretransfusion sample. Subsequent serological examinations indicated the presence of IgM anti-M antibodies in plasma but the direct antiglobulin and elution tests were negative. Antibody hemolytic activity assay confirmed AHTR caused by anti-M. The transfused red blood cells were MM and the patient is NN. These signs and symptoms disappeared rapidly and required no additional interventions before discharge. CONCLUSION: The accurate diagnosis of anti-M antibody-mediated acute hemolysis is essential for guiding treatment decisions.

9.
Sensors (Basel) ; 24(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38931587

RESUMO

Track irregularities directly affect the quality and safety of railway vehicle operations. Quantitative detection and real-time monitoring of track irregularities are of great importance. However, due to the frequent variable vehicle speed, vehicle operation is a typical non-stationary process. The traditional signal analysis methods are unsuitable for non-stationary processes, making the quantitative detection of the wavelength and amplitude of track irregularities difficult. To solve the above problems, this paper proposes a quantitative detection method of track irregularities under non-stationary conditions with variable vehicle speed by order tracking analysis for the first time. Firstly, a simplified wheel-rail dynamic model is established to derive the quantitative relationship between the axle-box vertical vibration and the track vertical irregularities. Secondly, the Simpson double integration method is proposed to calculate the axle-box vertical displacement based on the axle-box vertical acceleration, and the process error is optimized. Thirdly, based on the order tracking analysis theory, the angular domain resampling is performed on the axle-box vertical displacement time-domain signal in combination with the wheel rotation speed signals, and the quantitative detection of the track irregularities is achieved. Finally, the proposed method is validated based on simulation and field test analysis cases. We provide theoretical support and method reference for the quantitative detection method of track irregularities.

10.
Small ; : e2401530, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38751307

RESUMO

The unavoidable and unpredictable surface reconstruction of metallic copper (Cu) during the electrocatalytic carbon dioxide (CO2) reduction process is a double-edged sword affecting the production of high-value-added hydrocarbon products. It is crucial to control the surface facet reconstruction and regulate the targeted facets/facet interfaces, and further understand the mechanism between activity/selectivity and the reconstructed structure of Cu for CO2 reduction. Based on the current catalyst design methods, a facile strategy combining chemical reduction and electro-reduction is proposed to achieve specified Cu(111) facets and the Cu(110)/(111) interfaces in reconstructed Cu derived from cuprous oxide (Cu2O). The surface facet reconstruction significantly boosted the electrocatalytic conversion of CO2 into multi-carbon (C2+) products comparing to the unmodified catalyst. Theoretical and experimental analyses show that the Cu(110)/(111)s interface between Cu(110) and a small amount of Cu(111) can tailor the reaction routes and lower the reaction energy barrier of C-C coupling to ethylene (C2H4). The work will guide the surface facets reconstruction strategy for Cu-based CO2 electrocatalysts, providing a promising paradigm to understand the structural variation in catalysts.

11.
Cell Death Differ ; 31(6): 722-737, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38594443

RESUMO

Cyclic GMP-AMP synthase (cGAS) is a key innate immune sensor that recognizes cytosolic DNA to induce immune responses against invading pathogens. The role of cGAS is conventionally recognized as a nucleotidyltransferase to catalyze the synthesis of cGAMP upon recognition of cytosolic DNA, which leads to the activation of STING and production of type I/III interferon to fight against the pathogen. However, given that hepatocytes are lack of functional STING expression, it is intriguing to define the role of cGAS in hepatocellular carcinoma (HCC), the liver parenchymal cells derived malignancy. In this study, we revealed that cGAS was significantly downregulated in clinical HCC tissues, and its dysregulation contributed to the progression of HCC. We further identified cGAS as an immune tyrosine inhibitory motif (ITIM) containing protein, and demonstrated that cGAS inhibited the progression of HCC and increased the response of HCC to sorafenib treatment by suppressing PI3K/AKT/mTORC1 pathway in cellular and animal models. Mechanistically, cGAS recruits SH2-containing tyrosine phosphatase 1 (SHP1) via ITIM, and dephosphorylates p85 in phosphatidylinositol 3-kinase (PI3K), which leads to the suppression of AKT-mTORC1 pathway. Thus, cGAS is identified as a novel tumor suppressor in HCC via its function independent of its conventional role as cGAMP synthase, which indicates a novel therapeutic strategy for advanced HCC by modulating cGAS signaling.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nucleotidiltransferases , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Nucleotidiltransferases/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Humanos , Animais , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Masculino , Transdução de Sinais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Camundongos Nus , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Nucleotídeos Cíclicos/metabolismo
12.
Immunobiology ; 229(3): 152799, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636283

RESUMO

We hereby intend to further explore and confirm the underlying mechanism of Small nucleolar RNA Host Gene 1 (SNHG1) in osteoarthritis (OA). For in vitro assays, OA was induced in primary chondrocytes with interleukin-1ß (IL-1ß) treatment; while for in vivo tests, OA model was established in mice using the destabilization of the medial meniscus (DMM) method. Cell viability and apoptosis were assessed with MTT and flow cytometry assays, respectively. Cartilage tissue was stained by Safranin-O/Fast Green Staining. The mRNA and protein levels were separately determined via quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. SNHG1 overexpression promoted the viability yet inhibited the apoptosis of chondrocytes injured by IL-1ß. Moreover, the overexpression of SNHG1 promoted B-cell lymphoma-2 (Bcl-2) expression and activated phosphoinositol-3 kinase (PI3K)/protein kinase B (Akt) pathway but suppressed the process of autophagy, which led to down-regulation of light chain 3 (LC3)-II/I level and up-regulation of P62 level. However, rapamycin (RAPA, an autophagy activator) and LY294002 (a PI3K inhibitor) reversed the effects of SNHG1 overexpression on the viability and apoptosis of chondrocytes as well as on the proteins related to PI3K/Akt pathway and autophagy. In OA-modeled mice, SNHG1 overexpression prevented the loss of chondrocytes via the activation of PI3K/Akt pathway and the suppression of autophagy. SNHG1 overexpression might inhibit the apoptosis of chondrocytes by promoting PI3K/Akt pathway and inhibiting autophagy.


Assuntos
Apoptose , Autofagia , Condrócitos , Osteoartrite , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , RNA Longo não Codificante , Transdução de Sinais , Osteoartrite/metabolismo , Osteoartrite/genética , Animais , RNA Longo não Codificante/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Condrócitos/metabolismo , Humanos , Modelos Animais de Doenças , Masculino , Células Cultivadas , Sobrevivência Celular
13.
Pharm Res ; 41(5): 899-910, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38684563

RESUMO

BACKGROUND: Evaluating drug transplacental clearance is vital for forecasting fetal drug exposure. Ex vivo human placenta perfusion experiments are the most suitable approach for this assessment. Various in silico methods are also proposed. This study aims to compare these prediction methods for drug transplacental clearance, focusing on the large molecular weight drug vancomycin (1449.3 g/mol), using maternal-fetal physiologically based pharmacokinetic (m-f PBPK) modeling. METHODS: Ex vivo human placenta perfusion experiments, in silico approaches using intestinal permeability as a substitute (quantitative structure property relationship (QSPR) model and Caco-2 permeability in vitro-in vivo correlation model) and midazolam calibration model with Caco-2 scaling were assessed for determining the transplacental clearance (CLPD) of vancomycin. The m-f PBPK model was developed stepwise using Simcyp, incorporating the determined CLPD values as a crucial input parameter for transplacental kinetics. RESULTS: The developed PBPK model of vancomycin for non-pregnant adults demonstrated excellent predictive performance. By incorporating the CLPD parameterization derived from ex vivo human placenta perfusion experiments, the extrapolated m-f PBPK model consistently predicted maternal and fetal concentrations of vancomycin across diverse doses and distinct gestational ages. However, when the CLPD parameter was derived from alternative prediction methods, none of the extrapolated maternal-fetal PBPK models produced fetal predictions in line with the observed data. CONCLUSION: Our study showcased that combination of ex vivo human placenta perfusion experiments and m-f PBPK model has the capability to predict fetal exposure for the large molecular weight drug vancomycin, whereas other in silico approaches failed to achieve the same level of accuracy.


Assuntos
Feto , Troca Materno-Fetal , Modelos Biológicos , Placenta , Vancomicina , Humanos , Vancomicina/farmacocinética , Gravidez , Feminino , Placenta/metabolismo , Células CACO-2 , Feto/metabolismo , Simulação por Computador , Antibacterianos/farmacocinética , Antibacterianos/administração & dosagem , Perfusão , Adulto , Relação Quantitativa Estrutura-Atividade
14.
Cell Rep ; 43(4): 114051, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38564334

RESUMO

Uropathogenic Escherichia coli (UPEC) is the most common causative agent of urinary tract infection (UTI). UPEC invades bladder epithelial cells (BECs) via fusiform vesicles, escapes into the cytosol, and establishes biofilm-like intracellular bacterial communities (IBCs). Nucleoside-diphosphate kinase (NDK) is secreted by pathogenic bacteria to enhance virulence. However, whether NDK is involved in UPEC pathogenesis remains unclear. Here, we find that the lack of ndk impairs the colonization of UPEC CFT073 in mouse bladders and kidneys owing to the impaired ability of UPEC to form IBCs. Furthermore, we demonstrate that NDK inhibits caspase-1-dependent pyroptosis by consuming extracellular ATP, preventing superficial BEC exfoliation, and promoting IBC formation. UPEC utilizes the reactive oxygen species (ROS) sensor OxyR to indirectly activate the regulator integration host factor, which then directly activates ndk expression in response to intracellular ROS. Here, we reveal a signaling transduction pathway that UPEC employs to inhibit superficial BEC exfoliation, thus facilitating acute UTI.


Assuntos
Caspase 1 , Infecções por Escherichia coli , Núcleosídeo-Difosfato Quinase , Piroptose , Infecções Urinárias , Escherichia coli Uropatogênica , Escherichia coli Uropatogênica/patogenicidade , Animais , Infecções Urinárias/microbiologia , Infecções Urinárias/patologia , Camundongos , Caspase 1/metabolismo , Núcleosídeo-Difosfato Quinase/metabolismo , Núcleosídeo-Difosfato Quinase/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/patologia , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos C57BL , Humanos , Feminino , Bexiga Urinária/microbiologia , Bexiga Urinária/patologia , Células Epiteliais/microbiologia , Células Epiteliais/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Transdução de Sinais
15.
Heliyon ; 10(8): e29643, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38655343

RESUMO

Chitin is a polysaccharide similar to cellulose that contains abundant hydrogen bonds. Expansin-like proteins disrupt hydrogen bond networks, causing cellulose to swell and accelerating its degradation. We examined the effects of pretreatment with two expansin-like proteins, CxEXL22 (Arthrobotrys sp. CX1) and HcEXL (Hahella chejuensis), on chitin depolymerisation and enzymatic degradation. The efficiency of chitin degradation increased more than two-fold after pretreatment with expansin-like proteins. Following pretreatment with expansin-like proteins, chitin had a lower crystallinity index, greater d-spacing and crystallite size, and weaker hydrogen bonds, and the loosened porous microfibrils were more exposed than in untreated chitin. The rupture characterisation of crystalline chitin indicated that expansin-like proteins loosened the hydrogen bonds of the chitin polysaccharide chains, causing significant depolymerisation to expose more porous structures and enhance chitin accessibility.

16.
Sci Rep ; 14(1): 7909, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575582

RESUMO

This retrospective study aimed to investigate the impact of lumbar disc herniation (LDH) on vertebral axial rotation (VAR) in the lumbar spine, focusing on both close and distant neighboring vertebrae. A total of 516 patients with LDH and an equal number of healthy individuals were included in the study, matched for age and gender. The degree of axial rotation for each lumbar spine vertebra was assessed using the Nash-Moe index. The results revealed that the prevalence of VAR in the lumbar spine was significantly higher in the LDH group compared to the Control group (65.7% vs 46.7%, P < 0.001). Among the LDH group, the L2 vertebra had the highest frequency of VAR (49.5%), followed by L1 (45.1%), and then L3 to L5 (33.6%, 8.9%, 3.1%, respectively). A similar pattern was observed in the Control group (L2, 39.8%; L1, 34.6%; L3, 23.2%; L4, 3.1%; L5, 0.8%). Furthermore, the study found that disc herniation was associated with a higher incidence of VAR not only in close neighboring vertebrae but also in distant neighboring vertebrae. This indicates that the biomechanical influence of LDH extends beyond just the immediate adjacent vertebrae. To identify potential risk factors for VAR in LDH patients, multivariate analysis was performed. The results revealed that age was an independent risk factor for VAR (OR 1.022, 95% CI [1.011, 1.034], P < 0.001). However, the duration of symptoms and presence of back pain were not found to be significant risk factors for VAR.


Assuntos
Deslocamento do Disco Intervertebral , Humanos , Fenômenos Biomecânicos , Deslocamento do Disco Intervertebral/epidemiologia , Vértebras Lombares/diagnóstico por imagem , Prevalência , Estudos Retrospectivos , Fatores de Risco
17.
Int J Surg ; 110(7): 4197-4207, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38502853

RESUMO

BACKGROUND: Factors influencing recovery after decompression surgery for cauda equina syndrome (CES) are not completely identified. The authors aimed to investigate the most valuable predictors (MVPs) of poor postoperative recovery (PPR) in patients with CES and construct a nomogram for discerning those who will experience PPR. METHODS: Three hundred fifty-six patients with CES secondary to lumbar degenerative diseases treated at Xijing Hospital were randomly divided into training ( N =238) and validation ( N =118) cohorts at a 2:1 ratio. Moreover, 92 patients from the 970 th Hospital composed the testing cohort. Least Absolute Shrinkage and Selection Operator regression (LASSO) was used for selecting MVPs. The nomogram was developed by integrating coefficients of MVPs in the logistic regression, and its discrimination, calibration, and clinical utility were validated in all three cohorts. RESULTS: After 3 to 5 years of follow-up, the residual rates of bladder dysfunction, bowel dysfunction, sexual dysfunction, and saddle anesthesia were 41.9, 44.1, 63.7, and 29.0%, respectively. MVPs included stress urinary incontinence, overactive bladder, low stream, difficult defecation, fecal incontinence, and saddle anesthesia in order. The discriminatory ability of the nomogram was up to 0.896, 0.919, and 0.848 in the training, validation, and testing cohorts, respectively. Besides, the nomogram showed good calibration and clinical utility in all cohorts. Furthermore, the optimal cutoff value of the nomogram score for distinguishing those who will experience PPR was 148.02, above which postoperative outcomes tend to be poor. CONCLUSION: The first pretreatment nomogram for discerning CES patients who will experience PPR was developed and validated, which will aid clinicians in clinical decision-making.


Assuntos
Síndrome da Cauda Equina , Descompressão Cirúrgica , Nomogramas , Humanos , Síndrome da Cauda Equina/cirurgia , Feminino , Pessoa de Meia-Idade , Masculino , Estudos Retrospectivos , Idoso , Recuperação de Função Fisiológica , Resultado do Tratamento , Adulto , Complicações Pós-Operatórias , Estudos de Coortes
18.
Huan Jing Ke Xue ; 45(3): 1812-1820, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471892

RESUMO

Heavy metal contamination of soil has become a hot issue of social concern due to its impact on the safety of agricultural products in recent years. Wheat is one of the most dominant staple food crops worldwide and has become a major source of toxic metals in human diets. Foliar application was considered to be a more efficient and economical method of heavy metal remediation. Field experiments were carried out in Cd-, As-, and Pb-contaminated farmland soils. The effects of foliar conditioners on the accumulation of Cd, As, and Pb in wheat grains were investigated after being sprayed with Zn (0.2% ZnSO4), Mg (0.4% MgSO4), and Mn (0.2% MnSO4) separately and in combination. Thus, the effective foliar conditioners were selected to block the accumulation of Cd, As, and Pb in wheat grains grown in combined heavy metal-contaminated farmland in north China. The results showed that, compared with that in the control, the Cd, As, and Pb contents in wheat grains of the Zn+Mg+Mn foliar treatment were significantly decreased by 18.96%, 23.87%, and 51.31%, respectively, and TFgrain/straw decreased by 14.62%, 27.73%, and 47.70%, respectively. Thus, spraying the compound foliar conditioner of Zn+Mg+Mn could effectively reduce heavy metal accumulation in wheat grains through inhibition translocation of those metals from stem leaves to grain. In addition, the results indicated that Cd and As were mainly distributed at the central endosperm (34.08%-37.08%), whereas Pb was primarily distributed at the pericarp and seed coat (27.78%) of the wheat grain. Compared with that in the control, spraying the compound foliar conditioner of Zn+Mg+Mn extremely decreased Cd and As accumulation in the aleurone layer of the wheat grain by 81.10% and 82.24%, respectively. Except for the pericarp, seed coat, and central endosperm layers, the Pb content in each grain layer was dramatically decreased by 42.85% to 91.15%. There was only a significant negative correlation between heavy metal content and Zn content in the aleurone layer (P2) of wheat flour. In summary, the accumulation of Cd, As, and Pb in wheat grains, especially in the aleurone layer, could be effectively reduced by foliar conditioner application at the jointing, booting, and early filling stages of wheat, separately. Furthermore, besides the foliar treatment, removing wheat bran to reduce Cd contamination in wheat grains is highly recommended to ensure the safe production of wheat.


Assuntos
Arsênio , Metais Pesados , Poluentes do Solo , Humanos , Cádmio/análise , Zinco , Chumbo , Fazendas , Farinha , Poluentes do Solo/análise , Triticum , Solo , Grão Comestível/química
19.
Math Biosci Eng ; 21(2): 3304-3318, 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38454729

RESUMO

In this paper, we investigated leader-following consensus control for nonlinear multi-agent systems (MASs) experiencing denial-of-service (DoS) attacks. We proposed a distributed control strategy incorporating an adaptive scheme and a state feedback control gain to eliminate the effects of system nonlinear dynamics and uncertainties. In addition, we introduced a dynamic event-triggered control (DETC) to minimize the utilization of communication resources. Finally, we provided simulation results to show the validity of the proposed approach.

20.
Gut Microbes ; 16(1): 2316932, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38356294

RESUMO

Mitochondrial dynamics are critical in cellular energy production, metabolism, apoptosis, and immune responses. Pathogenic bacteria have evolved sophisticated mechanisms to manipulate host cells' mitochondrial functions, facilitating their proliferation and dissemination. Salmonella enterica serovar Typhimurium (S. Tm), an intracellular foodborne pathogen, causes diarrhea and exploits host macrophages for survival and replication. However, S. Tm-associated mitochondrial dynamics during macrophage infection remain poorly understood. In this study, we showed that within macrophages, S. Tm remodeled mitochondrial fragmentation to facilitate intracellular proliferation mediated by Salmonella invasion protein A (SipA), a type III secretion system effector encoded by Salmonella pathogenicity island 1. SipA directly targeted mitochondria via its N-terminal mitochondrial targeting sequence, preventing excessive fragmentation and the associated increase in mitochondrial reactive oxygen species, loss of mitochondrial membrane potential, and release of mitochondrial DNA and cytochrome c into the cytosol. Macrophage replication assays and animal experiments showed that mitochondria and SipA interact to facilitate intracellular replication and pathogenicity of S. Tm. Furthermore, we showed that SipA delayed mitochondrial fragmentation by indirectly inhibiting the recruitment of cytosolic dynamin-related protein 1, which mediates mitochondrial fragmentation. This study revealed a novel mechanism through which S. Tm manipulates host mitochondrial dynamics, providing insights into the molecular interplay that facilitates S. Tm adaptation within host macrophages.


Assuntos
Microbioma Gastrointestinal , Salmonella typhimurium , Animais , Salmonella typhimurium/metabolismo , Proteína Estafilocócica A/genética , Proteína Estafilocócica A/metabolismo , Sorogrupo , Dinâmica Mitocondrial , Proteínas de Bactérias/metabolismo , Macrófagos/metabolismo , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA