Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nat Genet ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839885

RESUMO

Aneuploidy is frequently detected in early human embryos as a major cause of early pregnancy failure. However, how aneuploidy affects cellular function remains elusive. Here, we profiled the transcriptomes of 14,908 single cells from 203 human euploid and aneuploid blastocysts involving autosomal and sex chromosomes. Nearly all of the blastocysts contained four lineages. In aneuploid chromosomes, 19.5% ± 1.2% of the expressed genes showed a dosage effect, and 90 dosage-sensitive domains were identified. Aneuploidy leads to prevalent genome-wide transcriptome alterations. Common effects, including apoptosis, were identified, especially in monosomies, partially explaining the lower cell numbers in autosomal monosomies. We further identified lineage-specific effects causing unstable epiblast development in aneuploidies, which was accompanied by the downregulation of TGF-ß and FGF signaling, which resulted in insufficient trophectoderm maturation. Our work provides crucial insights into the molecular basis of human aneuploid blastocysts and may shed light on the cellular interaction during blastocyst development.

2.
Comput Biol Med ; 178: 108663, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38905890

RESUMO

BACKGROUND: Robust and practical prognosis prediction models for hepatocellular carcinoma (HCC) patients play crucial roles in personalized precision medicine. MATERIAL AND METHODS: We recruited two independent HCC cohorts (discovery cohort and validation cohort), totally consisting of 222 HCC patients undergone surgical resection. We quantified the expressions of immune-related proteins (CD8, CD68, CD163, PD-1 and PD-L1) in paired HCC tissues and non-tumor liver tissues from these HCC patients using immunohistochemistry (mIHC) assays. We constructed the HCC prognosis prediction model using five different machine learning methods based on the patients in the discovery cohort, such as Cox proportional hazards (CoxPH). RESULTS: We identified 19 features that were associated with overall survival of HCC patients in the discovery cohort (p < 0.1), such as immune-related features CD68+ and CD8+ cell infiltration. We constructed five HCC prognosis prediction models using five different machine learning methods. Among the five different machine learning models, the CoxPH model achieved the best performance (area under the curve [AUC], 0.839; C-index, 0.779). According to the risk score from CoxPH model, we divided HCC patients into high-risk group/low-risk group. In both discovery cohort and validation cohort, the patients in low-risk group showed longer overall survival compared with those in high-risk group (p = 1.8 × 10-7 and 3.4 × 10-5, respectively). Moreover, our novel scoring system efficiently predicted the 6, 12, and 18 months survival rate of HCC patients with AUC >0.75 in both discovery cohort and validation cohort. In addition, we found that the scoring system could also distinguish the patients with high/low risks of relapse in both discovery cohort and validation cohort (p = 0.00015 and 0.00012). CONCLUSION: The novel CoxPH-based risk scoring model on clinical, laboratory-testing and immune-related features showed high prediction efficiencies for overall survival and recurrence of HCCs undergone surgical resection. Our results may be helpful to optimize clinical follow-up or therapeutic interventions.

3.
Heliyon ; 9(1): e12683, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36647346

RESUMO

Mesenchymal stem/stromal cells (MSCs) show tremendous potential for regenerative medicine due to their self-renewal, multi-differentiation and immunomodulatory capabilities. Largely studies had indicated conventional tissue-derived MSCs have considerable limited expandability and donor variability which hinders further application. Induced pluripotent stem cell (iPSCs)-derived MSCs (iMSCs) have created exciting source for standardized cellular therapy. However, the cellular and molecular differences between iMSCs and the cognate tissue-derived MSCs remains poorly explored. In this study, we first successfully reprogrammed human umbilical cords-derived mesenchymal stem/stromal cells (UMSCs) into iPSCs by using the cocktails of mRNA. Subsequently, iPSCs were further differentiated into iMSCs in xeno-free induction medium. Then, iMSCs were compared with the donor matched UMSCs by assessing proliferative state, differentiation capability, immunomodulatory potential through immunohistochemical analysis, flow cytometric analysis, transcriptome sequencing analysis, and combine with coculture with immune cell population. The results showed that iMSCs exhibited high expression of MSCs positive-makers CD73, CD90, CD105 and lack expression of negative-maker cocktails CD34, CD45, CD11b, CD19, HLA-DR; also successfully differentiated into osteocytes, chondrocytes and adipocytes. Further, the iMSCs were similar with their parental UMSCs in cell proliferative state detected by the CCK-8 assay, and in cell rejuvenation state assessed by ß-Galactosidase staining and telomerase activity related mRNA and protein analysis. However, iMSCs exhibited similarity to resident MSCs in Homeobox (Hox) genes expression profile and presented better neural differentiation potential by activation of NESTIN related pathway. Moreover, iMSCs owned enhanced immunosuppression capacity through downregulation pools of pro-inflammatory factors, including IL6, IL1B etc. and upregulation anti-inflammatory factors NOS1, TGFB etc. signals. In summary, our study provides an attractive cell source for basic research and offers fundamental biological insight of iMSCs-based therapy.

4.
Sci Rep ; 12(1): 10892, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35764880

RESUMO

Placenta plays essential role in successful pregnancy, as the most important organ connecting and interplaying between mother and fetus. However, the cellular characteristics and molecular interaction of cell populations within the fetomaternal interface is still poorly understood. Here, we surveyed the single-cell transcriptomic landscape of human full-term placenta and revealed the heterogeneity of cytotrophoblast cell (CTB) and stromal cell (STR) with the fetal/maternal origin consecutively localized from fetal section (FS), middle section (Mid_S) to maternal section (Mat_S) of maternal-fetal interface. Then, we highlighted a subpopulation of CTB, named trophoblast progenitor-like cells (TPLCs) existed in the full-term placenta and mainly distributed in Mid_S, with high expression of a pool of putative cell surface markers. Further, we revealed the putative key transcription factor PRDM6 that might promote the differentiation of endovascular extravillous trophoblast cells (enEVT) by inhibiting cell proliferation, and down-regulation of PRDM6 might lead to an abnormal enEVT differentiation process in PE. Together, our study offers important resources for better understanding of human placenta and stem cell-based therapy, and provides new insights on the study of tissue heterogeneity, the clinical prevention and control of PE as well as the maternal-fetal interface.


Assuntos
Feto , Trofoblastos , Diferenciação Celular/genética , Feminino , Humanos , Placenta/metabolismo , Gravidez , Células-Tronco , Trofoblastos/metabolismo
5.
Front Cell Dev Biol ; 10: 836887, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35450295

RESUMO

Mesenchymal stem/stromal cells derived from placenta (PMSCs) are an attractive source for regenerative medicine because of their multidifferentiation potential and immunomodulatory capabilities. However, the cellular and molecular heterogeneity of PMSCs has not been fully characterized. Here, we applied single-cell RNA sequencing (scRNA-seq) and assay for transposase-accessible chromatin sequencing (scATAC-seq) techniques to cultured PMSCs from human full-term placenta. Based on the inferred characteristics of cell clusters, we identify several distinct subsets of PMSCs with specific characteristics, including immunomodulatory-potential and highly proliferative cell states. Furthermore, integrative analysis of gene expression and chromatin accessibility showed a clearer chromatin accessibility signature than those at the transcriptional level on immunomodulatory-related genes. Cell cycle gene-related heterogeneity can be more easily distinguished at the transcriptional than the chromatin accessibility level in PMSCs. We further reveal putative subset-specific cis-regulatory elements regulating the expression of immunomodulatory- and proliferation-related genes in the immunomodulatory-potential and proliferative subpopulations, respectively. Moreover, we infer a novel transcription factor PRDM1, which might play a crucial role in maintaining immunomodulatory capability by activating PRDM1-regulon loop. Collectively, our study first provides a comprehensive and integrative view of the transcriptomic and epigenomic features of PMSCs, which paves the way for a deeper understanding of cellular heterogeneity and offers fundamental biological insight of PMSC subset-based cell therapy.

6.
FEBS J ; 288(18): 5311-5330, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33763993

RESUMO

Human umbilical cord-derived mesenchymal stem/stromal cells (UMSCs) demonstrate great therapeutic potential in regenerative medicine. The use of UMSCs for clinical applications requires high quantity and good quality of cells usually by in vitro expansion. However, the heterogeneity and the characteristics of cultured UMSCs and the cognate human umbilical cord tissue at single-cell resolution remain poorly defined. In this study, we created a single-cell transcriptome profile of human umbilical cord tissue and the cognate culture-expanded UMSCs. Based on the inferred characteristics of cell clusters and trajectory analysis, we identified three subgroups in culture-expanded UMSCs and putative novel transcription factors (TFs) in regulating UMSC state transition. Further, putative ligand-receptor interaction analysis demonstrated that cellular interactions most frequently occurred in epithelial-like cells with other cell groups in umbilical cord tissue. Moreover, we dissected the transcriptomic differences of in vitro and in vivo subgroups and inferred the telomere-related molecules and pathways that might be activated in UMSCs for cell expansion in vitro. Our study provides a comprehensive and integrative study of the transcriptomics of human umbilical cord tissue and their cognate-cultured counterparts, which paves the way for a deeper understanding of cellular heterogeneity and offers fundamental biological insight of UMSCs-based cell therapy.


Assuntos
Heterogeneidade Genética , Células-Tronco Mesenquimais/metabolismo , Transcriptoma/genética , Cordão Umbilical/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Humanos , Transplante de Células-Tronco Mesenquimais , Análise de Célula Única , Cordão Umbilical/citologia
7.
Stem Cells Int ; 2019: 6041816, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31737076

RESUMO

Human mesenchymal stem cells (hMSCs) are widely used in clinical research because of their multipotential, immunomodulatory, and reparative properties. Previous studies determined that hMSC spheroids from a three-dimensional (3D) culture possess higher therapeutic efficacy than conventional hMSCs from a monolayer (2D) culture. To date, various 3D culture methods have been developed to form hMSC spheroids but most of them used culture medium containing fetal bovine serum (FBS), which is not suitable for further clinical use. Here, we demonstrate that dissociated single MSCs seeded in induced pluripotent stem medium (MiPS) adhere loosely to the dish and spontaneously migrate to form spheroids during day 3 to day 6. Through component deletion screening and complementation experiments, the knockout serum replacement (KSR) was identified as necessary and sufficient for hMSC spheroid formation. Transcriptome analysis showed that the overall expression profiles were highly similar between 2D culture with FBS and KSR-derived spheroids. Interestingly, genes related to inflammatory response, immune response, and angiogenesis were upregulated in spheroids at day 6 and qPCR results further validated the increased expression level of related genes, including STC1, CCL7, HGF, IL24, and TGFB3. When spheroids were replated in normal FBS medium, cells formed a typical spindle-shaped morphology and FACS results showed that the recovered cells retained MSC-specific surface markers, such as CD73, CD90, and CD105. In summary, we developed a practical and convenient method to generate hMSC spheroids for clinical research and therapy.

8.
Nat Commun ; 10(1): 470, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30692544

RESUMO

Integrative analysis of multi-omics layers at single cell level is critical for accurate dissection of cell-to-cell variation within certain cell populations. Here we report scCAT-seq, a technique for simultaneously assaying chromatin accessibility and the transcriptome within the same single cell. We show that the combined single cell signatures enable accurate construction of regulatory relationships between cis-regulatory elements and the target genes at single-cell resolution, providing a new dimension of features that helps direct discovery of regulatory patterns specific to distinct cell identities. Moreover, we generate the first single cell integrated map of chromatin accessibility and transcriptome in early embryos and demonstrate the robustness of scCAT-seq in the precise dissection of master transcription factors in cells of distinct states. The ability to obtain these two layers of omics data will help provide more accurate definitions of "single cell state" and enable the deconvolution of regulatory heterogeneity from complex cell populations.


Assuntos
Cromatina/genética , Epigenômica , Regulação da Expressão Gênica , Análise de Célula Única/métodos , Transcriptoma , Cromatina/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Células HCT116 , Células HeLa , Humanos , Células K562 , Sequências Reguladoras de Ácido Nucleico/genética , Análise de Sequência de DNA/métodos
9.
Gigascience ; 7(11)2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30239706

RESUMO

Background: Investigating cell fate decision and subpopulation specification in the context of the neural lineage is fundamental to understanding neurogenesis and neurodegenerative diseases. The differentiation process of neural-tube-like rosettes in vitro is representative of neural tube structures, which are composed of radially organized, columnar epithelial cells and give rise to functional neural cells. However, the underlying regulatory network of cell fate commitment during early neural differentiation remains elusive. Results: In this study, we investigated the genome-wide transcriptome profile of single cells from six consecutive reprogramming and neural differentiation time points and identified cellular subpopulations present at each differentiation stage. Based on the inferred reconstructed trajectory and the characteristics of subpopulations contributing the most toward commitment to the central nervous system lineage at each stage during differentiation, we identified putative novel transcription factors in regulating neural differentiation. In addition, we dissected the dynamics of chromatin accessibility at the neural differentiation stages and revealed active cis-regulatory elements for transcription factors known to have a key role in neural differentiation as well as for those that we suggest are also involved. Further, communication network analysis demonstrated that cellular interactions most frequently occurred in the embryoid body stage and that each cell subpopulation possessed a distinctive spectrum of ligands and receptors associated with neural differentiation that could reflect the identity of each subpopulation. Conclusions: Our study provides a comprehensive and integrative study of the transcriptomics and epigenetics of human early neural differentiation, which paves the way for a deeper understanding of the regulatory mechanisms driving the differentiation of the neural lineage.


Assuntos
Diferenciação Celular , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Neurônios/metabolismo , Análise de Célula Única , Transcriptoma , Biomarcadores , Comunicação Celular/genética , Linhagem Celular , Reprogramação Celular/genética , Biologia Computacional/métodos , Redes Reguladoras de Genes , Humanos , Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Análise de Célula Única/métodos
10.
Biosci Rep ; 37(2)2017 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-28314787

RESUMO

Spermatogenic lineage has been directly generated in spermatogonial stem cell (SSC) conditions from human pluripotent stem cells (PSCs). However, it remains unknown whether mouse embryonic stem cells (ESCs) can directly differentiate into advanced male germ cell lineage in the same conditions. Here, we showed rather low efficiency of germ-like cell generation from mouse ESCs in SSC conditions. Interestingly, addition of retinoic acid (RA) into SSC conditions enabled efficient differentiation of mouse ESCs into germ-like cells, as shown by the activation of spermatogenesis-associated genes such as Mvh, Dazl, Prdm14, Stella, Scp1, Scp3, Stra8 and Rec8 In contrast, for cells cultured in control medium, the activation of the above genes barely occurred. In addition, RA with SSC conditions yielded colonies of Acrosin-expressing cells and the positive ratio reached a peak at day 6. Our work thus establishes a simple and cost-efficient approach for male germ like cell differentiation from mouse PSCs and may propose a useful strategy for studying spermatogenesis in vitro.


Assuntos
Células-Tronco Germinativas Adultas/fisiologia , Células Germinativas/fisiologia , Células-Tronco/fisiologia , Tretinoína/farmacologia , Adulto , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Humanos , Masculino , Camundongos , Espermatogênese/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA