Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 277(Pt 4): 134607, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39127294

RESUMO

Cordyceps guangdongensis, a novel edible mushroom in China, has shown many positive health effects. In this study, we extracted the C. guangdongensis polysaccharides (CGP) from the fruiting bodies, and investigated the mechanism for CGP improved high-fat diet-induced (HFDI) metabolic diseases. We found that CGP notably reduced fat mass, improved blood lipid levels and hepatic damage, and restored the gut microbiota dysbiosis induced by high-fat diet (HFD). Metabolome analyses showed that CGP changed the composition of bile acids, and regulated HFDI metabolic disorder in hepatic tissue. Transcriptome comparison showed that the improvement of hepatic steatosis for CGP was mainly related to lipid and carbohydrate metabolism. Association analysis result revealed that Odoribacter, Bifidobacterium and Bi. pseudolongum were negatively correlated to fat and blood lipid indicators, and were significantly associated with genes and metabolites related to carbohydrate and lipid metabolism. Collectively, these results indicate that CGP may be a promising supplement for the treatment of obesity and related metabolic diseases.

2.
ACS Appl Mater Interfaces ; 16(27): 34880-34891, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38949126

RESUMO

Lithium-rich manganese-based layered oxides (LRMOs) have recently attracted enormous attention on account of their remarkably big capacity and high working voltage. However, some inevitable inherent drawbacks impede their wide-scale commercial application. Herein, a kind of Cr-containing Co-free LRMO with a topical spinel phase (Li1.2Mn0.54Ni0.13Cr0.13O2) has been put forward. It has been found that the high valence of Cr6+ can reduce the Li+ ion content and induce the formation of a local spinel phase by combining more Li+ ions, which is beneficial to eliminate the phase boundary between the spinel phase and the bulk phase of the LRMO material, thus dramatically avoiding phase separation during the cycling process. In addition, the introduction of Cr can also expand the layer spacing and construct a stronger Cr-O bond compared with Mn-O, which enables to combine the transition metal (TM) slab to prevent the migration of TM ions and the transformation of the bulk phase to the spinel phase. Simultaneously, the synergistic effect of the successfully constructed spinel-layered biphase interface and the strong Cr-O bond can effectively impede the escape of lattice oxygen during the initial activation process of Li2MnO3 and provide the fast diffusion path for Li+ ion transmission, thus further reinforcing the configurable stability. Besides, Cr-LRMO presents an ultrahigh first discharge specific capacity of 310 mAh g-1, an initial Coulombic efficiency of as high as 92.09%, a good cycling stability (a capacity retention of 94.70% after 100 cycles at 1C), and a small voltage decay (3.655 mV per cycle), as well as a good rate capacity (up to 165.88 mAh g-1 at 5C).

3.
Small ; : e2400641, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989690

RESUMO

Li-rich manganese-based cathode (LRMC) has attracted intense attention to developing advanced lithium-ion batteries with high energy density. However, LRMC is still plagued by poor cyclic stability, undesired rate capacity, and irreversible oxygen release. To address these issues, herein, a feasible polyvinylidene fluoride (PVDF)-assisted interface modification strategy is proposed for modulating the surface architecture and electronic conductivity of LRMC by intruding the F-doped carbon coating, spinel structure, and oxygen vacancy on the LRMC, which can greatly enhance the cyclic stability and rate capacity, and restrain the oxygen release for LRMC. As a result, the modified material delivers satisfactory cyclic performance with a capacity retention of 90.22% after 200 cycles at 1 C, an enhanced rate capacity of 153.58 mAh g-1 at 5 C and 126.32 mAh g-1 at 10 C, and an elevated initial Coulombic efficiency of 85.63%. Moreover, the thermal stability, electronic conductivity, and structure stability of LRMC are also significantly improved by the PVDF-assisted interface modification strategy. Therefore, the strategy of simultaneously modulating the surface architecture and the electronic conductivity of LRMC provides a valuable idea to improve the comprehensive electrochemical performance of LRMC, which offers a promising reference for designing LRMC with high electrochemical performance.

4.
Plants (Basel) ; 13(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38931026

RESUMO

Pleurotus citrinopileatus Singer (PCS) has attracted increasing attention as a raw material for medicine and food. Its quality is greatly affected by the accumulation of metabolites, which varies with the applied drying methods. In this study, we utilize an approach based on ultra-high-performance liquid chromatography/Q Exactive mass spectrometry (UHPLC-QE-MS) to reveal the metabolic profiles of PCS from three different drying methods (natural air-drying, NAD; hot-air-drying, HAD; vacuum freeze-drying, VFD). The results showed that lipids, amino acids and their derivatives were all important secondary metabolites produced during NAD, HAD and VFD treatments, with the key differential metabolites of PCS during drying including fifteen lipids and seven amino acids. Meanwhile, VFD was the best way for long-term preservation of dried PCS. Hot-drying methods, especially HAD, can improve the medicinal component of PCS. Furthermore, KEGG enrichment analysis highlighted 16 pathways and indicated that amino acid metabolism might be the key metabolite pathway for the PCS drying process. Our study elucidates the relationship between drying methods and metabolites or metabolic pathways of PCS to determine the mechanisms affecting the quality of PCS, and finally provides reference values for further development and application in functional food and medications.

5.
Int J Biol Macromol ; 272(Pt 1): 132776, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38823750

RESUMO

Uranium as a nuclear fuel, its source and aftertreatment has been a hot topic of debate for developers. In this paper, amidoxime and guanidino-modified cotton fibers (DC-AO-PHMG) were synthesized by the two-step functionalization approach, which exhibited remarkable antimicrobial and high uranium recovery property. Adsorption tests revealed that DC-AO-PHMG had excellent selectivity and anti-interference properties, the maximum adsorption capacity of 609.75 mg/g. More than 85 % adsorption capacity could still be kept after 10 adsorption-desorption cycles, and it conformed to the pseudo-second-order kinetic model and the Langmuir adsorption isotherm model as a spontaneous heat-absorbing chemical monolayer process. FT-IR, EDS and XPS analyses speculated that the amidoxime and amino synergistically increased the uranium uptake. The inhibitory activities of DC-AO-PHMG against three aquatic bacteria, BEY, BEL (from Yellow River water and lake bottom silt, respectively) and B. subtilis were significantly stronger, and the uranium adsorption was not impacted by the high bacteria content. Most importantly, DC-AO-PHMG removed up to 94 % of uranium in simulated seawater and extracted up to 4.65 mg/g of uranium from Salt Lake water, which demonstrated its great potential in the field of uranium resource recovery.


Assuntos
Fibra de Algodão , Oximas , Urânio , Urânio/química , Adsorção , Oximas/química , Esgotos/química , Esgotos/microbiologia , Cinética , Antibacterianos/farmacologia , Antibacterianos/química , Purificação da Água/métodos
6.
Insects ; 15(5)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38786855

RESUMO

The aphidophagous gall midge, Aphidoletes aphidimyza (Rondani) (Diptera: Cecidomyiidae), a dominant natural enemy of aphids, has been used as a biological control agent in many countries to control aphids in greenhouses. To identify key factors that induce diapause in A. aphidimyza, we evaluated the effects of photoperiod and temperature on the incidence of diapause in A. aphidimyza under laboratory conditions. The results showed that temperature and photoperiod had significant impacts on development and diapause in A. aphidimyza. Low temperatures and a short photoperiod inhibited development, while high temperatures and a long photoperiod promoted development. Temperatures above 20 °C and a photoperiod greater than 14 h prevented diapause in A. aphidimyza. However, the highest diapause rate was recorded at under 15 °C and 10L:14D photoperiod conditions. At 15 °C, the first to third larvae were sensitive to a short photoperiod at any stage, and a short photoperiod had a cumulative effect on diapause induction. The longer the larvae received short light exposure, the higher the diapause rate appeared to be. Transcriptome sequencing analysis at different stages of diapause showed that differentially expressed genes were mainly enriched in the glucose metabolism pathway. Physiological and biochemical analyses showed that diapausing A. aphidimyza reduced water content; accumulated glycogen, trehalose, sorbitol, and triglycerides; and gradually reduced trehalose and triglyceride contents in the body with the extension of diapause time. Glycogen may be used as a source of energy, but sorbitol is usually used as a cryoprotectant. This study provided results on aspects of diapause in A. aphidimyza, providing data and theoretical support for promoting its commercial breeding and in-depth research on the molecular mechanisms underlying diapause regulation.

7.
Chemosphere ; 360: 142429, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797206

RESUMO

Heavy metal pollution threatens human and ecological health. Heavy metals can exist in the soil for a long time and migrate to organisms along the food chain. However, only a few studies have investigated the effects of a single stress on broad beans. Here, we aimed to characterize Cd and Pb bioaccumulation, at varying concentrations, in the broad bean, Vicia faba L. We also determined how the bioaccumulated metals are impacted by aphids that consume the plant. No significant difference was noted in the germination rates of broad beans at the early stage of planting (after 8 days), but eventually, the germination rates of broad beans at all time points first decreased and then increased, and the highest inhibition efficiency was observed in the T3 group (12.5 mg/L Cd2+ + 50 mg/L Pb2+). Fourteen days after planting, there was no significant difference in seedling height between the T5 (50 mg/L Cd2+ + 200 mg/L Pb2+) and control groups; however, that in the other groups decreased significantly and there was no dependence between stress concentration and inhibition efficiency. In addition, both Cd and Pb in the soil could be transferred to broad beans, and the concentration of Pb in the roots of broad beans was greater than that of Cd, whereas the opposite was observed in the stems and leaves. Notably, under mixed stress, aphids could significantly reduce the content of Cd in broad beans; similarly, the Pb content in the roots and stems of broad beans decreased significantly after being infested with aphids but increased significantly in the leaves. Further, the aphid infestation decreased the Pb content in the soil and the soil Cd content in the highest concentration group (T5 group) (50 mg/L Cd2+ + 200 mg/L Pb2+). These results highlight the necessity of focusing on the effect of insects on heavy metal remediation in plants and provide a new perspective for reducing plant Cd toxicity.


Assuntos
Afídeos , Bioacumulação , Cádmio , Chumbo , Metais Pesados , Poluentes do Solo , Vicia faba , Vicia faba/metabolismo , Animais , Poluentes do Solo/metabolismo , Poluentes do Solo/análise , Afídeos/fisiologia , Cádmio/metabolismo , Chumbo/metabolismo , Metais Pesados/metabolismo , Solo/química , Germinação/efeitos dos fármacos
8.
Foods ; 13(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38472798

RESUMO

Flammulina filiformis (F. filiformis) is called the 'benefiting intelligence' mushroom. There is a notable difference between a yellow cultivar (with a robust aroma) and a white mutant cultivar (with a high yield) of F. filiformis. A thorough analysis of aroma differences is essential to improve the aroma of high-yield strains. This study employed a combination of gas chromatography-mass spectrometry-olfactometry (GC-MS-O) and aroma extract dilution analysis (AEDA) to analyze the variations in aroma compounds. Then, the contribution of the odorants was determined using flavor dilution (FD) factors and odor activity values (OAVs). Aroma omission and recombination experiments were used to identify the key odorants. A total of 16 key aroma compounds were characterized in F. filiformis, along with four eight-carbon volatiles (3-octanone, 3-octanol, octanal, and 1-octen-3-ol). Finally, the dominant aroma characteristic was "sweet" for the yellow strain, while it was "green" for the white strain. More research is required to investigate the enzymes and corresponding genes that regulate the synthesis of aroma compounds in F. filiformis for future breeding programs.

9.
ACS Appl Mater Interfaces ; 16(9): 11349-11360, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38381529

RESUMO

P2-type Fe-Mn-based oxides offer excellent discharge specific capacity and are as affordable as typical layered oxide cathode materials for sodium-ion batteries (SIBs). After Cu modification, though they can improve the cycling performance and air stability, the discharge specific capacity will be reduced. Considering the complementary nature of biphasic phases in electrochemistry, hybridizing P2/O3 hybrid phases can enhance both the storage performance of the battery and specific capacity. Herein, a hybrid phase composite with high capacity and good cycle performance is deliberately designed and successfully prepared by controlling the amount of Mg doping in the layered oxide. It has been found that the introduction of Mg can activate anion redox in the oxide layer, resulting in a significant increase in the specific discharge capacity of the material. Meanwhile, the dual-phase structure can produce an interlocking effect, thus effectively alleviating structure strain. The degradation of cycling performance caused by structural damage during the high-voltage charging and discharging process is clearly mitigated. The results show that the specific discharge capacity of Na0.67Cu0.2Mg0.1Fe0.2Mn0.5O2 is as high as 212.0 mAh g-1 at 0.1C rate and 186.2 mAh g-1 at 0.2C rate. After 80 cycles, the capacity can still maintain 88.1%. Moreover, the capacity and cycle performance as well as the stability can still remain stable even in the high-voltage window. Therefore, this work offers an insightful exploration for the development of composite cathode materials for SIBs.

10.
Materials (Basel) ; 17(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38399030

RESUMO

316 L stainless steel is an ideal bipolar plate material for a proton exchange membrane fuel cell (PEMFC). However, the thickening of the passivation film on the stainless steel surface and the dissolution of corrosive ions during operation will affect the durability of the PEMFC. Herein, a heterogeneous layer is prepared on the surface of 316 L stainless steel through dual ion implantation of molybdenum ion and carbon ion combined with heat treatment to promote the corrosion resistance and conductivity of the bipolar plate. The ion implantation technique resulted in a uniform distribution of Mo and C elements on the surface of 316 L stainless steel, with a modified layer depth of about 70-80 nm. The electrical conductivity of the ion implanted samples was significantly improved, and the interfacial contact resistance was reduced from 464.25 mΩ × cm2 to 42.49 mΩ × cm2. Heat treatment enhances the surface homogenization, repairs the defects of irradiation damage, and improves the corrosion resistance of stainless steel. The corrosion current density of (Mo+C)-600 samples decreased from 1.21 × 10-8 A/cm2 to 2.95 × 10-9 A/cm2 under the long-term corrosion condition of 4 h. These results can provide guidance for the modification of stainless steel bipolar plates.

11.
J Econ Entomol ; 117(2): 448-456, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38408026

RESUMO

Megalurothrips usitatus (Bagrall) is one of the most important pests of cowpea, Vigna unguiculata (Linn.) Walp in South China. Four Orius species, including Orius minutus (L.), Orius nagaii (Yasunaga), Orius sauteri (Poppius), and Orius strigicollis (Poppius), have been commercially produced and widely used as natural enemies of pests in China. In this study, we evaluated the control efficiency of these Orius species on M. usitatus in tropical Hainan Province, China, by recording the survival rates, developmental times, and predation effects in laboratory and semi-field conditions. Laboratory experiments showed that all these 4 Orius species preyed on M. usitatus under the experimental temperatures (25, 30, and 35 °C), and O. strigicollis exhibited the highest survival rate and predation effect. Semi-field cage experiments showed that the control effect of 4 Orius species on M. usitatus was significantly higher than that under normal chemical control, with O. strigicollis having the highest effect. Greenhouse experiments in Hainan Province, China, confirmed that O. strigicollis had a significant control effect on M. usitatus. Our study indicated that O. strigicollis has a significant potential for the control of M. usitatus in cowpea fields in southern China.


Assuntos
Heterópteros , Tisanópteros , Vigna , Animais , Comportamento Predatório , China
12.
Insects ; 15(2)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38392529

RESUMO

This study identified and characterized the gene encoding recep tor-type guanylate cyclase-22-like (GCY-22; OnGCY) from the pirate bug Orius nagaii, an important biological control agent. The full-length cDNA of the GCY of O. nagaii was obtained by rapid amplification of cDNA ends (RACE); it had a total length of 4888 base pairs (bp), of which the open reading frame (ORF) was 3750 bp, encoding a polypeptide of 1249 amino acid residues. The physicochemical properties of OnGCY were predicted and analyzed by using relevant ExPASy software, revealing a molecular formula of C6502H10122N1698O1869S57, molecular weight of ~143,811.57 kDa, isoelectric point of 6.55, and fat index of 90.04. The resulting protein was also shown to have a signal peptide, two transmembrane regions, and a conserved tyrosine kinase (tyrkc). Silencing OnGCY by RNA interference significantly inhibited ovarian development and decreased fertility in female O. nagaii in the treated versus the control group. Additionally, OnGCY silencing significantly decreased the expression levels of other GCY and Vg genes. Thus, these results clarify the structure and biological function of OnGCY, which has an important role in insect fecundity. The results also provide a reference for agricultural pest control and future large-scale breeding of biological control agents.

13.
Nat Prod Res ; : 1-6, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38372270

RESUMO

A new isopimarane-type diterpene clinacanoid A (1) together with seven known terpenoids (2-8) were obtained from the Clinacanthus nutans. Their structures were elucidated based on extensive spectroscopic analysis (NMR, HR-ESI-MS), and the absolute configuration of 1 was established based on single crystal X-ray diffraction. The inhibitory activity of all the compounds on NO production in lipopolysaccharide-induced (LPS) mouse leukemic monocyte macrophage RAW264.7 cells was evaluated. Among them, compounds 1 and 3 showed potential anti-inflammatory activities, with IC50 values of 13.3 ± 0.3 and 12.4 ± 0.4 µM, respectively.

14.
Int J Mol Sci ; 25(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38203496

RESUMO

Diapause, an adaptative strategy for survival under harsh conditions, is a dynamic multi-stage process. Bombus terrestris, an important agricultural pollinator, is declining in the wild, but artificial breeding is possible by imitating natural conditions. Mated queen bees enter reproductive diapause in winter and recover in spring, but the regulatory mechanisms remain unclear. Herein, we conducted a comparative 4D label-free proteomic analysis of queen bees during artificial breeding at seven timepoints, including pre-diapause, diapause, and post-diapause stages. Through bioinformatics analysis of proteomic and detection of substance content changes, our results found that, during pre-diapause stages, queen bees had active mitochondria with high levels of oxidative phosphorylation, high body weight, and glycogen and TAG content, all of which support energy consumption during subsequent diapause. During diapause stages, body weight and water content were decreased but glycerol increased, contributing to cold resistance. Dopamine content, immune defense, and protein phosphorylation were elevated, while fat metabolism, protein export, cell communication, signal transduction, and hydrolase activity decreased. Following diapause termination, JH titer, water, fatty acid, and pyruvate levels increased, catabolism, synaptic transmission, and insulin signaling were stimulated, ribosome and cell cycle proteins were upregulated, and cell proliferation was accelerated. Meanwhile, TAG and glycogen content decreased, and ovaries gradually developed. These findings illuminate changes occurring in queen bees at different diapause stages during commercial production.


Assuntos
Diapausa , Proteômica , Abelhas , Animais , Peso Corporal , Glicogênio , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA