Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Hazard Mater ; 384: 121484, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31653409

RESUMO

Developing and designing a rational heterojunction with efficient charge kinetics properties have been a research hotspot for improving photocatalytic performance. Herein, a surface plasmons coupled two-dimensional chemical Au/Bi2WO6-MoS2 heterojunction was synthesized. In thus a system, Au nanoparticles are tightly attached to the sides of Bi2WO6 nanosheets, conducting a HEI effect with additional visible light response to inject "hot electrons" into Bi2WO6, resulting in additional charge generation. Meanwhile, few-layer MoS2 nanosheets were chemically assembled onto ultrathin Bi2WO6 nanosheets via interfacial SO bonds to form a intimate 2D-2D nanojunction, the separated and injected electrons on the surface of Bi2WO6 were further directional transfer to MoS2 nanosheets through SO bonds for detoxification of heavy metal ions Cr(VI), and the corresponding holes left on Bi2WO6 nanosheets were applied for simultaneous degradation of tetracycline antibiotic. The photocatalytic detoxification activity of Au/Bi2WO6-MoS2 was nearly 4.84, 3.47 and 1.90 times higher than that of pristine Bi2WO6, Au/Bi2WO6 and Bi2WO6-MoS2 composites, which could be ascribed to the effective charge kinetics steering and well manipulation of charge flow by virtue of the rational structural and compositional features. This work provides a new perspective for the construction of high-activity detoxification photocatalysts through steering charge kinetics.

2.
Chemosphere ; 193: 737-744, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29175401

RESUMO

Herein, a mesoporous nanoplate multi-directional assembled Bi2WO6 architecture was successfully prepared and applied for the photocatalytic removal of NOx pollutants at low concentrations under visible light and simulated solar light irradiation. Bi2WO6-180-C synthesized at a hydrothermal temperature of 180 °C with calcination exhibited an excellent conversion efficiency in the photocatalytic oxidation of gaseous NO. The crystallinity, morphology, specific surface area, pore environment, light absorption, and separation of photogenerated electrons and holes were investigated by various techniques; the excellent photocatalytic performance of Bi2WO6-180-C was attributed to its special hierarchical mesoporous structure with an appropriate pore size and interconnected porous network, which imparted good gas permeability and fast mass transfer of reaction intermediates and final products of NO oxidation. Furthermore, hierarchical mesoporous Bi2WO6 showed excellent photocatalytic durability and reusability.


Assuntos
Bismuto/química , Catálise , Óxido Nítrico/química , Óxido Nítrico/efeitos da radiação , Gases , Luz , Oxidantes Fotoquímicos , Oxirredução , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA