RESUMO
Neurons in the medial superior olive (MSO) exhibit high frequency responses such as subthreshold resonance, which is helpful to sensitively detect a small difference in the arrival time of sounds between two ears for precise sound localization. Recently, except for the high frequency depolarization resonance mediated by a low threshold potassium (IKLT) current, a low frequency hyperpolarization resonance mediated by a hyperpolarization-activated cation (IH) current is observed in experiments on the MSO neurons, forming double resonances. The complex dynamics underlying double resonances are studied in an MSO neuron model in the present paper. Firstly, double resonances similar to the experimental observations are simulated as the resting membrane potential is between half-activation voltages of IH and IKLT currents, and stimulation current (IZAP) with large amplitude and exponentially increasing frequency is applied. Secondly, multiple effective factors to modulate double resonances are obtained. Especially, the decrease of time constant of IKLT current and increase of conductance of IH and IKLT currents can enhance the depolarization resonance frequency for precise sound localization. Last, different frequency responses of slow IH and fast IKLT currents in formation of the resonances are acquired. A middle phase difference between IZAP and IKLT currents appears at a high frequency, and the interaction between the positive part of IZAP and the negative IKLT current forms the depolarization resonance. Interaction between the negative part of IZAP and positive IH current with a middle phase difference results in hyperpolarization resonance at a low frequency. Furthermore, the phase difference between IZAP and resonance current can well explain the increase of depolarization resonance frequency modulated by the increase of conductance of IH or IKLT currents. The results present the dynamical and biophysical mechanisms for the double resonances mediated by two currents in the MSO neurons, which is helpful to enhance the depolarization resonance frequency for precise sound localization.
RESUMO
The forced oscillations of hair bundle of inner hair cells of auditory nervous system evoked by external force from steady state are related to the fast adaption of hair cells, which are very important for auditory amplification. In the present paper, comprehensive and deep understandings to nonlinear dynamics of forced oscillations are acquired in four aspects. Firstly, the complex dynamics underlying the twitch (fast recoil of displacement X which is fast variable) induced from Case-1 and Case-2 steady states by external pulse force are obtained. With help of vector fields and nullclines, the phase trajectory of forced oscillations is identified to be an evolution process between two equilibrium points corresponding to zero force and pulse force, respectively, and then the twitch is obtained as the behavior running along the nonlinear part of X-nullcline. Especially, twitch observed in experiment are classified into 6 types, which are induced by negative change of force, negative and positive changes of force, and positive change of force, respectively, and further build relationships to three subcases of Case-2 steady state with N-shaped X-nullcline (equilibrium point locates on the left, middle, and right branches of X-nullcline, respectively). Secondly, the experimental observation of fatigue of twitch induced by continual two pulse forces, i.e. the reduced amplitude of the latter twitch when interval between two forces is short, is also explained as a nonlinear behavior beginning from an initial value different from that of the former one. Thirdly, the experimental observation of transition between sustained oscillations and steady state induced by pulse force can be simulated for Case-1 steady state with Z-shaped X-nullcline instead of Case-2, due to that there exists bifurcations with respect to external force for Case-1 while no bifurcations for Case-2. Last, the threshold phenomenon induced by simple pulse stimulation exists for Case-1 steady state rather than Case-2, due to that the upper and lower branches of Z-shaped X-nullcline close to the middle branch exhibit coexisting behaviors of variable X while N-shaped X-nullcline does not. The nonlinear dynamics of forced oscillations are helpful for explanations to the complex experimental observations, which presents potential measures to modulate the functions of twitch such as the fast adaption.
RESUMO
Background and objective: Abnormal activation of Janus kinase 2 (JAK2) promotes the pathogenesis and progress of inflammatory bowel disease (IBD) by stimulating the cytokine traffic. Based on docking studies, arbutin, a natural product extracted from a traditional medicinal plant bearberry, was found to bind to JAK2. The study aimed to investigate the effects and mechanisms of regulating JAK2 by arbutin on colitis in mice. Methods: A mice colitis model was established to mimic human IBD. The mice freely drank water containing dextran sulfate sodium. Inflammation in epithelial (IEC6) and immune (RAW264.7) cells was analyzed following treatment with lipopolysaccharides (LPS). Results: Colitis symptoms, including body weight loss, increased disease activity index, and increased colon weight/length ratio, were significantly alleviated by arbutin. Mediators of colonic pro-inflammatory cytokines as well as apoptosis markers in colitis were suppressed by the glycoside. High expression of phosphorylated JAK2 in colitis was significantly reversed by arbutin. The effects of arbutin treatment on colitis were considerably inhibited by the JAK2 inhibitor AG490. LPS-induced inflammatory responses were also suppressed by arbutin, which was notably inhibited by the JAK2 inhibitor AG490. Conclusion: The findings obtained herein suggest the protective role of arbutin and provide novel insights into alternative colitis treatments, which involve inhibition of the JAK2 signaling pathway.
RESUMO
It is established that ultrathin layered double hydroxide nanosheets (LDHNS) and zeolitic imidazole frameworks (ZIF) are desirable electrochemical sensing modifiers owing to their large surface area and abundant catalytic sites. Integration of them is thus an effective solution to maximize their electrocatalytic activity. Herein, a novel reaction-diffusion framework (RDF) technique is applied for the in situ growth of ZIF-67 on ultrathin CoAl-LDHNS (CoAl-LDHNS@ZIF-67). In a confined space of the agar gel matrix of RDF, the coordination reaction between organic ligands and CoAl-LDHNS without an additional Co2+ source achieves the controllable growth of ZIF-67 crystals through a long vertical diffusion. The prepared composite comprises both CoAl-LDHNS and ZIF-67 components with a certain ratio and provides a large surface area and amply catalytic sites, thus realizing a rapid transfer of electron and mass. The CoAl-LDHNS@ZIF-67 modified electrode is employed for the simultaneous detection of naphthol isomers by differential pulse voltammetry. Naphthol isomers display anodic reactions with a wide peak potential difference, allowing their simultaneous detection feasible. Voltammetric responses of α-naphthol and ß-naphthol follow good linearity against the concentration in a wide range from 0.3 to 150 µM with limits of detection of 54 and 82 nM, respectively. The proposed sensor also demonstrates excellent selectivity, stability, reproducibility, and practicability for the simultaneous detection of naphthol isomers.
RESUMO
Although the bursting patterns with spike undershoot are involved with the achievement of physiological or cognitive functions of brain with synaptic noise, noise induced-coherence resonance (CR) from resting state or subthreshold oscillations instead of bursting has been widely identified to play positive roles in information process. Instead, in the present paper, CR characterized by the increase firstly and then decease of peak value of power spectrum of spike trains is evoked from a bursting pattern with spike undershoot, which means that the minimal membrane potential within burst is lower than that of the subthreshold oscillations between bursts, while CR cannot be evoked from the bursting pattern without spike undershoot. With bifurcations and fast-slow variable dissection method, the bursting patterns with and without spike undershoot are classified into "Sub-Hopf/Fold" bursting and "Fold/Homoclinic" bursting, respectively. For the bursting with spike undershoot, the trajectory of the subthreshold oscillations is very close to that of the spikes within burst. Therefore, noise can induce more spikes from the subthreshold oscillations and modulate the bursting regularity, which leads to the appearance of CR. For the bursting pattern without spike undershoot, the trajectory of the quiescent state is not close to that of the spikes within burst, and noise cannot induce spikes from the quiescent state between bursts, which is cause for non-CR. The result provides a novel case of CR phenomenon and extends the scopes of CR concept, presents that noise can enhance rather than suppress information of the bursting patterns with spike undershoot, which are helpful for understanding the dynamics and the potential physiological or cognitive functions of the nerve fiber or brain neurons with such bursting patterns.
RESUMO
Zeolitic imidazole frameworks (ZIF) and ultrathin layered double hydroxide nanosheets (LDHNS) have drawn growing attention in the electrocatalysis field. Combining the merits and maximizing the electrocatalytic activity of each building block in the corresponding composite is imperative but challenging. This work thus proposes a simple strategy for the in situ growth of ZIF-67 on ultrathin CoAl-LDHNS (LDHNS@ZIF-67) without an additional Co2+ source. Thanks to the ultrathin nature, CoAl-LDHNS provide more Co reactive sites for the ordered growth of ZIF-67 nanocrystals on this 2D matrix via coordination interactions between Co2+ and 2-methylimidazole. The obtained LDHNS@ZIF-67 provides more convenient pathways to rapid electron transportation between the basal electrode and analytes. Hence, the modified electrode can be applied for the truly simultaneous detection of naphthol isomers by differential pulse voltammetry. α-naphthol and ß-naphthol exhibit irreversible oxidation peaks at 0.327 and 0.487 V vs. saturated calomel electrode, respectively, making their simultaneous detection feasible. The voltammetric responses of both isomers are linear in concentrations ranging from 0.3 to 150 µM with limits of detection of 62 and 94 nM, respectively. The sensor exhibits advantages including good reproducibility, stability, selectivity, and practicability for the simultaneous detection of naphthol isomers in real water samples.
RESUMO
In this paper, we study the dynamics of an autonomous system for a hair bundle subject to mechanical load. We demonstrated the spontaneous oscillations that arise owing to interactions between the linear stiffness and the adapting stiffness. It is found that by varying the linear stiffness, the system can induce a weakly chaotic attractor in a certain region where the stable periodic orbit is infinitely close to a parabolic curve composed of unstable equilibrium points. By altering the adapting stiffness associated with the calcium concentration, the system is able to trigger the transition from the bistable resting state, through a pair of symmetric Hopf bifurcation, into the bistable limit cycle, even to the chaotic attractor. At a negative adapting stiffness, the system exhibits a double-scroll chaotic attractor. According to the method of qualitative theory of fast-slow decomposition, the trajectory of a double-scroll chaotic attractor in the whole system depends upon the symmetric fold/fold bifurcation in a fast system. Furthermore, the control of the adapting stiffness in the improved system with two slow variables can trigger a new transition from the bistable resting state into the chaotic attractor, even to the hyperchaotic attractor by observing the Lyapunov exponent.
RESUMO
In this study, the authors first discuss the existence of Bogdanov-Takens and triple zero singularity of a five neurons neutral bidirectional associative memory neural networks model with two delays. Then, by utilising the centre manifold reduction and choosing suitable bifurcation parameters, the second-order and the third-order normal forms of the Bogdanov-Takens bifurcation for the system are obtained. Finally, the obtained normal form and numerical simulations show some interesting phenomena such as the existence of a stable fixed point, a pair of stable non-trivial equilibria, a stable limit cycles, heteroclinic orbits, homoclinic orbits, coexistence of two stable non-trivial equilibria and a stable limit cycles in the neighbourhood of the Bogdanov-Takens bifurcation critical point.
Assuntos
Redes Neurais de ComputaçãoRESUMO
A simple and solvent-free procedure to synthesize alpha,alpha'-bis(substituted benzylidene) cycloalkanones, catalyzed by copper(II) trifluoroacetate through crossed-aldol condensation of various aromatic aldehydes with cyclic ketones is reported. The reaction proceeded smoothly in good to excellent yields.