Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Adv Mater ; : e2402897, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801015

RESUMO

Water is the source of life and civilization, but water icing causes catastrophic damage to human life and diverse industrial processes. Currently, superhydrophobic surfaces (inspired by the lotus effect) aided anti-icing attracts intensive attention due to their energy-free property. Here, recent advances in anti-icing by design and functionalization of superhydrophobic surfaces are reviewed. The mechanisms and advantages of conventional, macrostructured, and photothermal superhydrophobic surfaces are introduced in turn. Conventional superhydrophobic surfaces, as well as macrostructured ones, easily lose the icephobic property under extreme conditions, while photothermal superhydrophobic surfaces strongly rely on solar illumination. To address the above issues, a potentially smart strategy is found by developing macrostructured photothermal storage superhydrophobic (MPSS) surfaces, which integrate the functions of macrostructured superhydrophobic materials, photothermal materials, and phase change materials (PCMs), and are expected to achieve all-day anti-icing in various fields. Finally, the latest achievements in developing MPSS surfaces, showcasing their immense potential, are highlighted. Besides, the perspectives on the future development of MPSS surfaces are provided and the problems that need to be solved in their practical applications are proposed.

2.
Sci Bull (Beijing) ; 69(10): 1437-1447, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38531718

RESUMO

Atmospheric water harvesting (AWH) is a promising solution to the water shortage problem. Current sorption-based AWH (SAWH) systems seldom obtain both wide climatic adaptability and high energy efficiency due to the lack of thermodynamic optimization. To achieve the ideal harvesting circulation in SAWH systems, the "optimal harvesting window" (OHW) design based on thermodynamic analysis was first proposed and validated by our prototype. The "OHW" theory indicates the water production rate and energy efficiency could be improved by properly reducing the adsorption temperature. As the humidity increases, the optimal adsorption temperature should be closer to the dew point of the environment. Experimental results revealed that, loaded with 3 kg widely adopted silica gel, the daily water production could reach 5.76-17.64 L/d with ultrahigh energy efficiency of 0.46-1.5 L/kWh. This prototype could also achieve optimal performance in wide climatic conditions in terms of 13-35 °C and 18%-72% RH. Lastly, the performance of photovoltaic (PV)-driven SAWH was evaluated. Results showed that a 1 m2 PV panel could generate 0.66-2 L water per day in Shanghai throughout the year, the highest in opening literature. Notably, this work introduces a promising concept that can help achieve large-scale, ultra-fast, energy-efficient AWH worldwide.

3.
Adv Mater ; 36(11): e2310177, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38069449

RESUMO

Droplet impact is a ubiquitous liquid behavior that closely tied to human life and production, making indispensable impacts on the big world. Nature-inspired superhydrophobic surfaces provide a powerful platform for regulating droplet impact dynamics. The collision between classic phenomena of droplet impact and the advanced manufacture of superhydrophobic surfaces is lighting up the future. Accurately understanding, predicting, and tailoring droplet dynamic behaviors on superhydrophobic surfaces are progressive steps to integrate the droplet impact into versatile applications and further improve the efficiency. In this review, the progress on phenomena, mechanisms, regulations, and applications of droplet impact on superhydrophobic surfaces, bridging the gap between droplet impact, superhydrophobic surfaces, and engineering applications are comprehensively summarized. It is highlighted that droplet contact and rebound are two focal points, and their fundamentals and dynamic regulations on elaborately designed superhydrophobic surfaces are discussed in detail. For the first time, diverse applications are classified into four categories according to the requirements for droplet contact and rebound. The remaining challenges are also pointed out and future directions to trigger subsequent research on droplet impact from both scientific and applied perspectives are outlined. The review is expected to provide a general framework for understanding and utilizing droplet impact.

4.
Sci Bull (Beijing) ; 69(5): 671-687, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38105159

RESUMO

Establishing alternative methods for freshwater production is imperative to effectively alleviate global water scarcity, particularly in land-locked arid regions. In this context, extracting water from the ubiquitous atmospheric moisture is an ingenious strategy for decentralized freshwater production. Sorption-based atmospheric water harvesting (SAWH) shows strong potential for supplying liquid water in a portable and sustainable way even in desert environments. Herein, the latest progress in SAWH technology in terms of materials, devices, and systems is reviewed. Recent advances in sorbent materials with improved water uptake capacity and accelerated sorption-desorption kinetics, including physical sorbents, polymeric hydrogels, composite sorbents, and ionic solutions, are discussed. The thermal designs of SAWH devices for improving energy utilization efficiency, heat transfer, and mass transport are evaluated, and the development of representative SAWH prototypes is clarified in a chronological order. Thereafter, state-of-the-art operation patterns of SAWH systems, incorporating intermittent, daytime continuous and 24-hour continuous patterns, are examined. Furthermore, current challenges and future research goals of this cutting-edge field are outlined. This review highlights the irreplaceable role of heat and mass transfer enhancement and facile structural improvement for constructing high-yield water harvesters.

5.
STAR Protoc ; 4(4): 102763, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38060442

RESUMO

Desiccant-coated heat exchangers provide a practical solution for the efficient removal of moisture from the air. Here, we present a protocol to synthesize an ultra-hygroscopic polymer to develop a LiCl loaded in curdlan hydrogel (LiCl@Cur)-coated heat exchanger for deep dehumidification. We describe steps for preparing the curdlan gel solution, hydrogel, LiCl solution, and LiCl@Cur. We then detail procedures for preparing curdlan-coated and LiCl@Cur-coated heat exchangers. The coated heat exchanger described in this protocol has a maximum dehumidification capacity of 12 g/kg. For complete details on the use and execution of this protocol, please refer to Pan et al. (2023).1.


Assuntos
Temperatura Alta , beta-Glucanas , Hidrogéis
7.
Adv Mater ; 35(35): e2302038, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37199373

RESUMO

Sorption-based atmospheric water harvesting (AWH) is a promising approach for mitigating worldwide water scarcity. However, reliable water supply driven by sustainable energy regardless of diurnal variation and weather remains a long-standing challenge. To address this issue, a polyelectrolyte hydrogel sorbent with an optimal hybrid-desorption multicyclic-operation strategy is proposed, achieving all-day AWH and a significant increase in daily water production. The polyelectrolyte hydrogel possesses a large interior osmotic pressure of 659 atm, which refreshes sorption sites by continuously migrating the sorbed water within its interior, and thus enhancing sorption kinetics. The charged polymeric chains coordinate with hygroscopic salt ions, anchoring the salts and preventing agglomeration and leakage, thereby enhancing cyclic stability. The hybrid desorption mode, which couples solar energy and simulated waste heat, introduces a uniform and adjustable sorbent temperature for achieving all-day ultrafast water release. With rapid sorption-desorption kinetics, an optimization model suggests that eight moisture capture-release cycles are capable of achieving high water yield of 2410 mLwater kgsorbent -1 day-1 , up to 3.5 times that of single-cyclic non-hybrid modes. The polyelectrolyte hydrogel sorbent and the coupling with sustainable energy driven desorption mode pave the way for the next-generation AWH systems, significantly bringing freshwater on a multi-kilogram scale closer.

8.
Science ; 380(6644): 458-459, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37141359

RESUMO

Dual-use devices offer a different path for more-sustainable living.

9.
Adv Mater ; 35(40): e2210957, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36869587

RESUMO

Freshwater scarcity is a global challenge posing threats to the lives and daily activities of humankind such that two-thirds of the global population currently experience water shortages. Atmospheric water, irrespective of geographical location, is considered as an alternative water source. Sorption-based atmospheric water harvesting (SAWH) has recently emerged as an efficient strategy for decentralized water production. SAWH thus opens up a self-sustaining source of freshwater that can potentially support the global population for various applications. In this review, the state-of-the-art of SAWH, considering its operation principle, thermodynamic analysis, energy assessment, materials, components, different designs, productivity improvement, scale-up, and application for drinking water, is first extensively explored. Thereafter, the practical integration and potential application of SAWH, beyond drinking water, for wide range of utilities in agriculture, fuel/electricity production, thermal management in building services, electronic devices, and textile are comprehensively discussed. The various strategies to reduce human reliance on natural water resources by integrating SAWH into existing technologies, particularly in underdeveloped countries, in order to satisfy the interconnected needs for food, energy, and water are also examined. This study further highlights the urgent need and future research directions to intensify the design and development of hybrid-SAWH systems for sustainability and diverse applications.

10.
Environ Sci Pollut Res Int ; 30(5): 13697-13701, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36136185

RESUMO

Perchlorate, nitrate, and thiocyanate are reported to affect human health. However, it is unclear about the associations between exposure to these chemicals and abdominal aortic calcification (AAC). A total of 959 individuals were included in a large representative survey. Urinary levels of perchlorate, nitrate, and thiocyanate were measured by ion chromatography coupled with electrospray tandem mass spectrometry. AAC was diagnosed based on dual-energy X-ray absorptiometry (DXA). There were 276 (28.8%) cases of AAC among the participants. The level of urinary nitrate was significantly lower in AAC patients compared with non-AAC patients (36.4 mg/L [20.6, 59.5] vs. 42.4 [23.8, 68.3]; P = 0.013). In multivariable-adjusted logistic regression models, urinary nitrate was associated with the prevalence of AAC. Compared with the lowest quartile, the odds ratios (95% confidence intervals) across increasing quartiles were 1.06 (0.69-1.61; P = 0.799), 0.64 (0.41-1.00; P = 0.049) and 0.74 (0.47-1.15; P = 0.180). Restricted cubic splines suggested that urinary nitrate ranging between 43.7 and 115.4 mg/L was associated with a lower risk of AAC. Moderate exposure to nitrate was associated with a lower risk of AAC.


Assuntos
Nitratos , Tiocianatos , Humanos , Percloratos , Prevalência , Modelos Logísticos , Fatores de Risco
11.
Nat Commun ; 13(1): 6771, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36351950

RESUMO

Water and electricity scarcity are two global challenges, especially in arid and remote areas. Harnessing ubiquitous moisture and sunlight for water and power generation is a sustainable route to address these challenges. Herein, we report a moisture-induced energy harvesting strategy to realize efficient sorption-based atmospheric water harvesting (SAWH) and 24-hour thermoelectric power generation (TEPG) by synergistically utilizing moisture-induced sorption/desorption heats of SAWH, solar energy in the daytime and radiative cooling in the nighttime. Notably, the synergistic effects significantly improve all-day thermoelectric power density (~346%) and accelerate atmospheric water harvesting compared with conventional designs. We further demonstrate moisture-induced energy harvesting for a hybrid SAWH-TEPG device, exhibiting high water production of 750 g m-2, together with impressive thermoelectric power density up to 685 mW m-2 in the daytime and 21 mW m-2 in the nighttime. Our work provides a promising approach to realizing sustainable water production and power generation at anytime and anywhere.

12.
STAR Protoc ; 3(4): 101780, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36317176

RESUMO

Atmospheric water harvesting (AWH) offers a solution for efficiently extracting water from the air. In this protocol, we detail the steps to develop a composite sorbent loaded with hygroscopic salts and lithium chloride (LiCl) and based on hydrogel, acrylamide monomer (AM), and carbon nanotubes (CNTs). We describe a streamlined experimental approach for the synthesis of the honeycomb-optimized hydrogel-based composite adsorbent (PCLG) by in situ polymerization. The produced sorbent exhibits ultra-high adsorption/desorption capacity per unit volume and low-temperature desorption. For complete details on the use and execution of this protocol, please refer to Wang et al. (2022).


Assuntos
Nanotubos de Carbono , Polímeros , Polimerização , Água , Hidrogéis
13.
Adv Sci (Weinh) ; 9(33): e2204724, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36209387

RESUMO

Sorption-based atmospheric water harvesting (SAWH) holds huge potential due to its freshwater capabilities for alleviating water scarcity stress. The two essential parts, sorbent material and system structure, dominate the water sorption-desorption performance and the total water productivity for SAWH system together. Attributed to the superiorities in aspects of sorption-desorption performance, scalability, and compatibility in practical SAWH devices, hygroscopic porous polymers (HPPs) as next-generation sorbents are recently going through a vast surge. However, as HPPs' sorption mechanism, performance, and applied potential lack comprehensive and accurate guidelines, SAWH's subsequent development is restricted. To address the aforementioned problems, this review introduces HPPs' recent development related to mechanism, performance, and application. Furthermore, corresponding optimized strategies for both HPP-based sorbent bed and coupling structural design are proposed. Finally, original research routes are directed to develop next-generation HPP-based SAWH systems. The presented guidelines and insights can influence and inspire the future development of SAWH technology, further achieving SAWH's practical applications.


Assuntos
Polímeros , Água , Água/química , Adsorção , Porosidade
14.
Adv Sci (Weinh) ; 9(36): e2204508, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36285671

RESUMO

Atmospheric water harvesting (AWH) provides a fascinating chance to facilitate a sustainable water supply, which obtains considerable attention recently. However, ignoring the energy efficiency of AWH leads to high energy consumption in current prototypes (ca. 101 to 102  MJ kg-1 ), misfitting with the high-strung and complicated water-energy nexus. In this perspective, a robust evaluation of existing AWHs is conducted and a detailed way to high-efficiency AWH is paved. The results suggest that using cooling-assisted adsorption will weaken the bounds of climate to sorbent selections and have the potential to improve efficiency by more than 50%. For device design, the authors deeply elucidate how to perfect heat/mass transfer to narrow the gap between lab and practices. Reducing heat loss, recovering heat and structured sorbent are the main paths to improve efficiency on the device scale, which is more significant for a large-scale AWH. Besides efficiency, the techno-economic evaluation reveals that developing a cost-effective AWH is also crucial for sustainability, which can be contributed by green synthesis routes and biomass-based sorbents. These analyses provide a uniform platform to guide the next-generation AWH to mitigate the global water crisis.


Assuntos
Atmosfera , Água
15.
Nat Commun ; 13(1): 5406, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109494

RESUMO

Sorption-based atmospheric water harvesting has the potential to realize water production anytime, anywhere, but reaching a hundred-gram high water yield in semi-arid climates is still challenging, although state-of-the-art sorbents have been used. Here, we report a portable and modularized water harvester with scalable, low-cost, and lightweight LiCl-based hygroscopic composite (Li-SHC) sorbents. Li-SHC achieves water uptake capacity of 1.18, 1.79, and 2.93 g g-1 at 15%, 30%, and 60% RH, respectively. Importantly, considering the large mismatch between water capture and release rates, a rationally designed batch processing mode is proposed to pursue maximum water yield in a single diurnal cycle. Together with the advanced thermal design, the water harvester shows an exceptional water yield of 311.69 g day-1 and 1.09 g gsorbent-1 day-1 in the semi-arid climate with the extremely low RH of ~15%, demonstrating the adaptability and possibility of achieving large-scale and reliable water production in real scenarios.


Assuntos
Clima Desértico , Água
16.
Artigo em Inglês | MEDLINE | ID: mdl-35783519

RESUMO

Background: Coronary heart disease (CHD) is a chronic disease caused by atherosclerosis (AS), which can cause myocardial ischemia, hypoxia, or necrosis, seriously threatening human health. There is an urgent need for effective treatments and drugs to reduce the various risk factors for coronary heart disease and relieve symptoms of angina pectoris and myocardial infarction in patients. Jujuboside A (JuA) is a triterpenoid saponin extracted from jujube seeds, which has various biological activities such as antioxidant, anti-inflammatory, antiapoptotic, and neuroprotective effects. We study the function of JuA in myocardial injury, dyslipidemia, and inflammation in the CHD rat model, to explore its potential mechanism of improving CHD. Methods: A rat model of CHD was established by feeding a high-fat diet. The rats were randomly divided into 5 groups (n = 6): control group, CHD group, JuA 25 mg/kg group, JuA 50 mg/kg group, and JuA 75 mg/kg group. Echocardiography was used to detect the cardiac function parameters of rats in each group, and then, hematoxylin and eosin staining was used to assess the histopathological injury in myocardial tissues. Levels of blood lipids, myocardial injury indexes, and inflammatory factors of rats in each group were measured by biochemical tests and enzyme linked immunosorbent assay, and the levels of Bax, Bcl-2, c-caspase-3, PPAR-α, p65, p-p65, IκBα, and p-IκBα protein expression in myocardial tissues were detected by western blot. Results: Compared with the CHD group, JuA therapy significantly improved injury in myocardial tissue and endothelial tissue. It also strengthened cardiac function, while decreasing total cholesterol, triacylglycerol, and low-density lipoprotein cholesterol levels in the serum and increasing high-density lipoprotein cholesterol levels. In addition, JuA also restrained cardiomyocytes apoptosis and inhibited the inflammatory reaction by reducing TNF-α, IL-1ß, and IL-6 expression in myocardial tissues. Furthermore, administration of JuA inhibited the activation of PPAR-α pathway by preventing the phosphorylation of p65 and IκBα in myocardial tissues of CHD rats. Conclusion: JuA may improve cardiac function, alleviate myocardial and endothelial injury, and also ameliorate dyslipidemia and inflammatory reaction in rats with CHD, where JuA probably plays a protective role by inhibiting the activation of PPAR-α pathway.

17.
Chem Soc Rev ; 51(15): 6574-6651, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35815699

RESUMO

Significant progress has been made in direct air capture (DAC) in recent years. Evidence suggests that the large-scale deployment of DAC by adsorption would be technically feasible for gigatons of CO2 capture annually. However, great efforts in adsorption-based DAC technologies are still required. This review provides an exhaustive description of materials development, adsorbent shaping, in situ characterization, adsorption mechanism simulation, process design, system integration, and techno-economic analysis of adsorption-based DAC over the past five years; and in terms of adsorbent development, affordable DAC adsorbents such as amine-containing porous materials with large CO2 adsorption capacities, fast kinetics, high selectivity, and long-term stability under ultra-low CO2 concentration and humid conditions. It is also critically important to develop efficient DAC adsorptive processes. Research and development in structured adsorbents that operate at low-temperature with excellent CO2 adsorption capacities and kinetics, novel gas-solid contactors with low heat and mass transfer resistances, and energy-efficient regeneration methods using heat, vacuum, and steam purge is needed to commercialize adsorption-based DAC. The synergy between DAC and carbon capture technologies for point sources can help in mitigating climate change effects in the long-term. Further investigations into DAC applications in the aviation, agriculture, energy, and chemical industries are required as well. This work benefits researchers concerned about global energy and environmental issues, and delivers perspective views for further deployment of negative-emission technologies.


Assuntos
Aminas , Dióxido de Carbono , Adsorção , Aminas/química , Dióxido de Carbono/química , Cinética , Porosidade
18.
ACS Nano ; 16(7): 11473-11482, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35848579

RESUMO

Building-integrated photovoltaics is a crucial technology for developing zero-energy buildings and sustainable cities, while great efforts are required to make photovoltaic (PV) panels aesthetically pleasing. This places an urgent demand on PV colorization technology that has a low impact on power conversion efficiency (PCE) and is simultaneously mass-producible at a low cost. To address this challenge, this study contributes a colorization strategy for solar PVs based on short-range correlated dielectric microspheres, i.e., photonic glass. Through theoretical studies, first we demonstrate that the photonic glass self-assembled by high-index microspheres could enable both colored solar cells and modules, with easily variable colors and negligible parasitic absorption. By a fast spray coating process of colloidal monodisperse ZnS microspheres, we show the photonic glass layer could be easily deposited on silicon solar cells, enabling them to have structural colors. Through varying microsphere sizes, solar cells with different colors are achieved, showing low PCE loss compared to normal black cells. These colored solar cells are also encapsulated with a general lamination process to produce PV modules with various colors and patterns at a stunning PCE approaching 21%. Moreover, the long-term stability is subsequently verified by aging tests including an outdoor exposure for 10 days and a damp-heat test for 1000 h, and the mass producibility is demonstrated by presenting a colored PV panel with an output power over 108 W. These results confirm photonic glass as a promising strategy for colored PVs possessing high efficiency and practical applicability.

19.
Chem Sci ; 13(23): 6950-6958, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35774182

RESUMO

An optimal temperature is crucial for a broad range of applications, from chemical transformations, electronics, and human comfort, to energy production and our whole planet. Photochemical molecular thermal energy storage systems coupled with phase change behavior (MOST-PCMs) offer unique opportunities to capture energy and regulate temperature. Here, we demonstrate how a series of visible-light-responsive azopyrazoles couple MOST and PCMs to provide energy capture and release below 0 °C. The system is charged by blue light at -1 °C, and discharges energy in the form of heat under green light irradiation. High energy density (0.25 MJ kg-1) is realized through co-harvesting visible-light energy and thermal energy from the environment through phase transitions. Coatings on glass with photo-controlled transparency are prepared as a demonstration of thermal regulation. The temperature difference between the coatings and the ice cold surroundings is up to 22.7 °C during the discharging process. This study illustrates molecular design principles that pave the way for MOST-PCMs that can store natural sunlight energy and ambient heat over a wide temperature range.

20.
STAR Protoc ; 3(2): 101255, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35313710

RESUMO

Sorption-based atmospheric water harvesting (SAWH) is a feasible and sustainable approach to address water scarcity issues. Featuring the high affinity of hygroscopic salts with water vapor, salt-based composite sorbents have been widely used. However, the risk of salt solution leakage is still challenging. In this protocol, we introduce a porous waterproof and moisture-permeable membrane encapsulation technique to develop salt-based sorbents. The high salt content composites (HSCC-Ex) exhibit remarkably high salt content of 80 wt % without the risk of leakage. For complete details on the use and execution of this protocol, please refer to Shan et al. (2021).


Assuntos
Cloreto de Sódio , Vapor , Cloreto de Sódio na Dieta , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA