Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Elife ; 122023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36786678

RESUMO

As we learn, dynamic memory processes build structured knowledge across our experiences. Such knowledge enables the formation of internal models of the world that we use to plan, make decisions, and act. Recent theorizing posits that mnemonic mechanisms of differentiation and integration - which at one level may seem to be at odds - both contribute to the emergence of structured knowledge. We tested this possibility using fMRI as human participants learned to navigate within local and global virtual environments over the course of 3 days. Pattern similarity analyses on entorhinal cortical and hippocampal patterns revealed evidence that differentiation and integration work concurrently to build local and global environmental representations, and that variability in integration relates to differences in navigation efficiency. These results offer new insights into the neural machinery and the underlying mechanisms that translate experiences into structured knowledge that allows us to navigate to achieve goals.


Assuntos
Objetivos , Hipocampo , Humanos , Memória , Córtex Entorrinal , Imageamento por Ressonância Magnética , Mapeamento Encefálico/métodos
2.
J Cogn Neurosci ; 35(1): 90-110, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36166300

RESUMO

The hippocampus plays a critical role in supporting episodic memory, in large part by binding together experiences and items with surrounding contextual information. At present, however, little is known about the roles of different hippocampal subfields in supporting this item-context binding. To address this question, we constructed a task in which items were affiliated with differing types of context-cognitive associations that vary at the local, item level and membership in temporally organized lists that linked items together at a global level. Participants made item recognition judgments while undergoing high-resolution fMRI. We performed voxel pattern similarity analyses to answer the question of how human hippocampal subfields represent retrieved information about cognitive states and the time at which a past event took place. As participants recollected previously presented items, activity patterns in the CA23DG subregion carried information about prior cognitive states associated with these items. We found no evidence to suggest reinstatement of information about temporal context at the level of list membership, but exploratory analyses revealed representations of temporal context at a coarse level in conjunction with representations of cognitive contexts. Results are consistent with characterizations of CA23DG as a critical site for binding together items and contexts in the service of memory retrieval.


Assuntos
Hipocampo , Memória Episódica , Humanos , Hipocampo/diagnóstico por imagem , Rememoração Mental , Reconhecimento Psicológico , Imageamento por Ressonância Magnética
3.
Nat Commun ; 11(1): 2053, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32345979

RESUMO

Goal-directed behavior requires the representation of a task-set that defines the task-relevance of stimuli and guides stimulus-action mappings. Past experience provides one source of knowledge about likely task demands in the present, with learning enabling future predictions about anticipated demands. We examine whether spatial contexts serve to cue retrieval of associated task demands (e.g., context A and B probabilistically cue retrieval of task demands X and Y, respectively), and the role of the hippocampus and dorsolateral prefrontal cortex (dlPFC) in mediating such retrieval. Using 3D virtual environments, we induce context-task demand probabilistic associations and find that learned associations affect goal-directed behavior. Concurrent fMRI data reveal that, upon entering a context, differences between hippocampal representations of contexts (i.e., neural pattern separability) predict proactive retrieval of the probabilistically dominant associated task demand, which is reinstated in dlPFC. These findings reveal how hippocampal-prefrontal interactions support memory-guided cognitive control and adaptive behavior.


Assuntos
Hipocampo/fisiologia , Córtex Pré-Frontal/fisiologia , Análise e Desempenho de Tarefas , Adolescente , Adulto , Comportamento , Cognição/fisiologia , Feminino , Humanos , Masculino , Reforço Psicológico , Fatores de Tempo , Adulto Jovem
4.
J Neurosci ; 40(11): 2343-2356, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32019830

RESUMO

Goal-directed behavior can benefit from proactive adjustments of cognitive control that occur in anticipation of forthcoming cognitive control demands (CCD). Predictions of forthcoming CCD are thought to depend on learning and memory in two ways: First, through direct experience, associative encoding may link previously experienced CCD to its triggering item, such that subsequent encounters with the item serve to cue retrieval of (i.e., predict) the associated CCD. Second, in the absence of direct experience, pattern completion and mnemonic integration mechanisms may allow CCD to be generalized from its associated item to other items related in memory. While extant behavioral evidence documents both types of CCD prediction, the neurocognitive mechanisms giving rise to these predictions remain largely unexplored. Here, we tested two hypotheses: (1) memory-guided predictions about CCD precede control adjustments due to the actual CCD required; and (2) generalization of CCD can be accomplished through integration mechanisms that link partially overlapping CCD-item and item-item associations in memory. Supporting these hypotheses, the temporal dynamics of theta and alpha power in human electroencephalography data (n = 43, 26 females) revealed that an associative CCD effect emerges earlier than interaction effects involving actual CCD. Furthermore, generalization of CCD from one item (X) to another item (Y) was predicted by a decrease in alpha power following the presentation of the X-Y pair. These findings advance understanding of the mechanisms underlying memory-guided adjustments of cognitive control.SIGNIFICANCE STATEMENT Cognitive control adaptively regulates information processing to align with task goals. Experience-based expectations enable adjustments of control, leading to improved performance when expectations match the actual control demand required. Using EEG, we demonstrate that memory for past cognitive control demand proactively guides the allocation of cognitive control, preceding adjustments of control triggered by the demands of the present environment. Furthermore, we demonstrate that learned cognitive control demands can be generalized through mnemonic integration processes, enabling the spread of expectations about cognitive control demands to items associated in memory. We reveal that this generalization is linked to decreased alpha oscillation in medial frontal channels. Collectively, these findings provide new insights into how memory-control interactions facilitate goal-directed behavior.


Assuntos
Aprendizagem por Associação/fisiologia , Cognição/fisiologia , Memória/fisiologia , Adaptação Psicológica , Adolescente , Adulto , Ritmo alfa/fisiologia , Mapeamento Encefálico , Sinais (Psicologia) , Eletroencefalografia , Feminino , Objetivos , Humanos , Masculino , Desempenho Psicomotor/fisiologia , Tempo de Reação , Teste de Stroop , Ritmo Teta/fisiologia , Fatores de Tempo , Adulto Jovem
5.
Neuropsychologia ; 124: 66-78, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30578805

RESUMO

Emotional experiences are typically remembered with a greater sense of recollection than neutral experiences, but memory benefits for emotional items do not typically extend to their source contexts. Item and source memory have been attributed to different subregions of the medial temporal lobes (MTL), but it is unclear how emotional item recollection fits into existing models of MTL function and, in particular, what is the role of the hippocampus. To address these issues, we used high-resolution functional magnetic resonance imaging (fMRI) to examine MTL contributions to successful emotional item and context encoding. The results showed that emotional items were recollected more often than neutral items. Whereas amygdala and perirhinal cortex (PRC) activity supported the recollection advantage for emotional items, hippocampal and parahippocampal cortex activity predicted subsequent source memory for both types of items, reflecting a double dissociation between anterior and posterior MTL regions. In addition, amygdala activity during encoding modulated the relationships of PRC activity and hippocampal activity to subsequent item recollection and source memory, respectively. Specifically, whereas PRC activity best predicted subsequent item recollection when amygdala activity was relatively low, hippocampal activity best predicted source memory when amygdala activity was relatively high. We interpret these findings in terms of complementary compared to synergistic amygdala-MTL interactions. The results suggest that emotion-related enhancements in item recollection are supported by an amygdala-PRC pathway, which is separable from the hippocampal pathway that binds items to their source context.


Assuntos
Emoções/fisiologia , Rememoração Mental/fisiologia , Lobo Temporal/fisiologia , Adolescente , Adulto , Tonsila do Cerebelo/fisiologia , Mapeamento Encefálico , Feminino , Hipocampo/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiologia , Córtex Perirrinal/fisiologia , Adulto Jovem
6.
Front Physiol ; 9: 12, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29422866

RESUMO

Uterine fluid contains a high concentration of [Formula: see text] which plays an essential role in sperm capacitation and fertilization. In addition, the [Formula: see text] concentration in uterine fluid changes periodically during the estrous cycle. It is well-known that the endometrial epithelium contains machineries involving the apical SLC26 family anion exchangers for secreting [Formula: see text] into the uterine fluid. In the present study, we find for the first time that the electroneutral Na+/[Formula: see text] cotransporter NBCn1 is expressed at the apical membrane of the endometrial epithelium. The protein abundance of the apical NBCn1 and that of the apical SLC26A4 and SLC26A6 are reciprocally regulated during the estrous cycle in the uterus. NBCn1 is most abundant at diestrus, whereas SLC26A4/A6 are most abundant at proestrus/estrus. In the ovariectomized mice, the expression of uterine NBCn1 is inhibited by ß-estradiol, but stimulated by progesterone, whereas that of uterine SLC26A4/A6 is stimulated by ß-estradiol. In vivo perfusion studies show that the endometrial epithelium is capable of both secreting and reabsorbing [Formula: see text]. Moreover, the activity for [Formula: see text] secretion by the endometrial epithelium is significantly higher at estrus than it is at diestrus. The opposite is true for [Formula: see text] reabsorption. We conclude that the endometrial epithelium simultaneously contains the activity for [Formula: see text] secretion involving the apical SLC26A4/A6 and the activity for [Formula: see text] reabsorption involving the apical NBCn1, and that the acid-base homeostasis in the uterine fluid is regulated by the finely-tuned balance of the two activities.

7.
Biol Proced Online ; 18: 5, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26839516

RESUMO

BACKGROUND: One of the most notable recent advances in electron microscopy (EM) was the development of genetically-encoded EM tags, including the fluorescent flavoprotein Mini-SOG (Mini-Singlet Oxygen Generator). Mini-SOG generates good EM contrast, thus providing a viable alternative to technically-demanding methods such as immuno-electron microcopy (immuno-EM). Based on the Mini-SOG technology, in this paper, we describe the construction, validation and optimization of a series of vectors which allow expression of Mini-SOG in the Drosophila melanogaster genetic model system. FINDINGS: We constructed a Mini-SOG tag that has been codon-optimized for expression in Drosophila (DMS tag) using PCR-mediated gene assembly. The photo-oxidation reaction triggered by DMS was then tested using these vectors in Drosophila cell lines. DMS tag did not affect the subcellular localization of the proteins we tested. More importantly, we demonstrated the utility of the DMS tag for EM in Drosophila by showing that it can produce robust photo-oxidation reactions in the presence of blue light and the substrate DAB; the resultant electron micrographs contain electron-dense regions corresponding to the protein of interest. The vectors we generated allow protein tagging at both termini, for constitutive and inducible protein expression, as well as the generation of transgenic lines by P-element transformation. CONCLUSIONS: We demonstrated the feasibility of Mini-SOG tagging in Drosophila. The constructed vectors will no doubt be a useful molecular tool for genetic tagging to facilitate high-resolution localization of proteins in Drosophila by electron microscopy.

8.
Neuron ; 89(5): 1110-20, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26875624

RESUMO

Reward motivation is known to modulate memory encoding, and this effect depends on interactions between the substantia nigra/ventral tegmental area complex (SN/VTA) and the hippocampus. It is unknown, however, whether these interactions influence offline neural activity in the human brain that is thought to promote memory consolidation. Here we used fMRI to test the effect of reward motivation on post-learning neural dynamics and subsequent memory for objects that were learned in high- and low-reward motivation contexts. We found that post-learning increases in resting-state functional connectivity between the SN/VTA and hippocampus predicted preferential retention of objects that were learned in high-reward contexts. In addition, multivariate pattern classification revealed that hippocampal representations of high-reward contexts were preferentially reactivated during post-learning rest, and the number of hippocampal reactivations was predictive of preferential retention of items learned in high-reward contexts. These findings indicate that reward motivation alters offline post-learning dynamics between the SN/VTA and hippocampus, providing novel evidence for a potential mechanism by which reward could influence memory consolidation.


Assuntos
Hipocampo/fisiologia , Aprendizagem/fisiologia , Retenção Psicológica/fisiologia , Recompensa , Adulto , Mapeamento Encefálico , Feminino , Hipocampo/irrigação sanguínea , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Oxigênio/sangue , Tempo de Reação , Adulto Jovem
9.
Neurobiol Learn Mem ; 134 Pt A: 123-134, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26805590

RESUMO

Regional differences in large-scale connectivity have been proposed to underlie functional specialization along the anterior-posterior axis of the medial temporal lobe (MTL), including the hippocampus (HC) and the parahippocampal gyrus (PHG). However, it is unknown whether functional connectivity (FC) can be used reliably to parcellate the human MTL. The current study aimed to differentiate subregions of the HC and the PHG based on patterns of whole-brain intrinsic FC. FC maps were calculated for each slice along the longitudinal axis of the PHG and the HC. A hierarchical clustering algorithm was then applied to these data in order to group slices according to the similarity of their connectivity patterns. Surprisingly, three discrete clusters were identified in the PHG. Two clusters corresponded to the parahippocampal cortex (PHC) and the perirhinal cortex (PRC), and these regions showed preferential connectivity with previously described posterior-medial and anterior-temporal networks, respectively. The third cluster corresponded to an anterior PRC region previously described as area 36d, and this region exhibited preferential connectivity with auditory cortical areas and with a network involved in visceral processing. The three PHG clusters showed different profiles of activation during a memory-encoding task, demonstrating that the FC-based parcellation identified functionally dissociable sub-regions of the PHG. In the hippocampus, no sub-regions were identified via the parcellation procedure. These results indicate that connectivity-based methods can be used to parcellate functional regions within the MTL, and they suggest that studies of memory and high-level cognition need to differentiate between PHC, posterior PRC, and anterior PRC.


Assuntos
Conectoma/métodos , Hipocampo/fisiologia , Processamento de Imagem Assistida por Computador , Giro Para-Hipocampal/fisiologia , Lobo Temporal/fisiologia , Adulto , Feminino , Hipocampo/diagnóstico por imagem , Humanos , Aprendizagem/fisiologia , Imageamento por Ressonância Magnética , Masculino , Giro Para-Hipocampal/diagnóstico por imagem , Lobo Temporal/diagnóstico por imagem , Adulto Jovem
10.
J Chem Ecol ; 32(9): 1965-76, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16906361

RESUMO

We examined the hypothesis that the polyphagous green peach aphid (Myzus persicae) shows clone-specific adaptation to the narrow-leafed lupin (Lupinus angustifolius) containing toxic quinolizidine alkaloids. We compared the performance of a lupin-feeding clone of M. persicae from Western Australia to that of nine clones of the same species collected from eastern Australian locations, where narrow-leafed lupins rarely occur. Mean relative growth rate (MRGR) and colonization ability varied among the M. persicae clones on one aphid-susceptible and two aphid-resistant lupin varieties. The performance of the lupin-feeding clone was better than that of all other clones on the resistant narrow-leafed lupin varieties "Tanjil" and "Kalya", indicating that successful lupin feeding is not a characteristic of the species. Gas chromatography-mass spectrometry analyses (GC-MS) of phloem from the different lupin varieties detected differences in the quantities of two alkaloid compounds identified as 13-OH-lupanine and lupanine. The lupin-feeding M. persicae clone also showed better performance on artificial diet amended with lupanine. The results suggest that the M. persicae clone collected from Western Australia is adapted to feed successfully on narrow-leafed lupin, and that this adaptation may involve improved tolerance of lupanine in its diet.


Assuntos
Alcaloides/química , Ração Animal/análise , Afídeos/fisiologia , Tolerância a Medicamentos , Resistência a Inseticidas , Lupinus/parasitologia , Adaptação Fisiológica , Animais , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Lupinus/imunologia , Sementes/química
11.
Bioorg Med Chem Lett ; 15(8): 2027-32, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15808462

RESUMO

A series of benzothiazolium compounds were identified as novel classes of inhibitors of nitric oxide production in a cell culture system. They exhibited approximately 1600 folds potency with IC(50) at approximately 50nM to several microM as compared to IC(50) 88.4microM of l-NMMA, a known inhibitor of nitric oxide synthase. The mechanistic studies suggest that decreased iNOS protein synthesis and mRNA transcription, at least in part, were related to the inhibitory activity of effective benzothiazolium compounds. The correlation of in vivo and in vitro activities using mouse paw edema model was also demonstrated.


Assuntos
Interferon gama/farmacologia , Lipopolissacarídeos/farmacologia , Óxido Nítrico/antagonistas & inibidores , Tiazóis/química , Animais , Benzotiazóis , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Interferon gama/antagonistas & inibidores , Lipopolissacarídeos/antagonistas & inibidores , Camundongos , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/biossíntese , Óxido Nítrico Sintase Tipo II , Tiazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA