Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ambio ; 51(5): 1199-1218, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34751934

RESUMO

Water is essential for human activities and economic development, and the water environment significantly influences ecological balance and global climate. China and Southeast Asia are the most populous areas in the world, and their water resources are deteriorating day by day. We focus on five representative cities such as, Beijing, Jakarta, Hanoi, Kathmandu and Manila to investigate water-environmental problems with the ultimate goal of providing recommendations for sustainable urban water management. The study found that (1) the water environment of all cities has been polluted to varying levels, while the pollution has improved in Beijing and Jakarta, and the situation in other regions is severe. (2) The aquatic biodiversity has reduced, and its pollution is mainly caused by organic pollutants and decreasing river flow. In addition, numerous people live in megacities without access to clean surface water or piped drinking water, which greatly increases the use of groundwater. Further, frequent floods in the world leads to serious damage to urban infrastructure and further deterioration of water environment quality. To address these problems, countries and organizations have begun to construct wastewater treatment plants and develop water-saving technology to ensure healthy and sustainable development of water environment. The results and practical recommendations of this study can provide scientific insights for future research and management strategies to address water quality challenges during ongoing policy debates and decision-making processes.


Assuntos
Qualidade da Água , Recursos Hídricos , China , Cidades , Humanos , Filipinas , Abastecimento de Água
2.
Neural Netw ; 63: 133-40, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25536233

RESUMO

This paper presents a global and local finite-time synchronization control law for memristor neural networks. By utilizing the drive-response concept, differential inclusions theory, and Lyapunov functional method, we establish several sufficient conditions for finite-time synchronization between the master and corresponding slave memristor-based neural network with the designed controller. In comparison with the existing results, the proposed stability conditions are new, and the obtained results extend some previous works on conventional recurrent neural networks. Two numerical examples are provided to illustrate the effective of the design method.


Assuntos
Algoritmos , Redes Neurais de Computação , Dinâmica não Linear , Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA