Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Toxins (Basel) ; 11(12)2019 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-31771308

RESUMO

Apart from causing serious yield losses, various kinds of mycotoxins may be accumulated in plant tissues infected by Fusarium strains. Fusarium mycotoxin contamination is one of the most important concerns in the food safety field nowadays. However, limited information on the causal agents, etiology, and mycotoxin production of this disease is available on pepper in China. This research was conducted to identify the Fusarium species causing pepper fruit rot and analyze their toxigenic potential in China. Forty-two Fusarium strains obtained from diseased pepper from six provinces were identified as F. equiseti (27 strains), F. solani (10 strains), F.fujikuroi (five strains). This is the first report of F. equiseti, F. solani and F. fujikuroi associated with pepper fruit rot in China, which revealed that the population structure of Fusarium species in this study was quite different from those surveyed in other countries, such as Canada and Belgium. The mycotoxin production capabilities were assessed using a well-established liquid chromatography mass spectrometry method. Out of the thirty-six target mycotoxins, fumonisins B1 and B2, fusaric acid, beauvericin, moniliformin, and nivalenol were detected in pepper tissues. Furthermore, some mycotoxins were found in non-colonized parts of sweet pepper fruit, implying migration from colonized to non-colonized parts of pepper tissues, which implied the risk of mycotoxin contamination in non-infected parts of food products.


Assuntos
Capsicum/microbiologia , Fusarium/química , Micotoxinas/química , Doenças das Plantas/microbiologia , China , Cromatografia Líquida de Alta Pressão , Contaminação de Alimentos , Fusarium/genética , Espectrometria de Massas , Filogenia
2.
Toxins (Basel) ; 9(1)2016 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-28035973

RESUMO

In this study, twenty of the most common Fusarium species were molecularly characterized and inoculated on potato dextrose agar (PDA), rice and maize medium, where thirty three targeted mycotoxins, which might be the secondary metabolites of the identified fungal species, were detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Statistical analysis was performed with principal component analysis (PCA) to characterize the mycotoxin profiles for the twenty fungi, suggesting that these fungi species could be discriminated and divided into three groups as follows. Group I, the fusaric acid producers, were defined into two subgroups, namely subgroup I as producers of fusaric acid and fumonisins, comprising of F. proliferatum, F. verticillioides, F. fujikuroi and F. solani, and subgroup II considered to only produce fusaric acid, including F. temperatum, F. subglutinans, F. musae, F. tricinctum, F. oxysporum, F. equiseti, F. sacchari, F. concentricum, F. andiyazi. Group II, as type A trichothecenes producers, included F. langsethiae, F. sporotrichioides, F. polyphialidicum, while Group III were found to mainly produce type B trichothecenes, comprising of F. culmorum, F. poae, F. meridionale and F. graminearum. A comprehensive picture, which presents the mycotoxin-producing patterns by the selected fungal species in various matrices, is obtained for the first time, and thus from an application point of view, provides key information to explore mycotoxigenic potentials of Fusarium species and forecast the Fusarium infestation/mycotoxins contamination.


Assuntos
Fusarium/química , Micotoxinas/química , Cromatografia Líquida , Meios de Cultura/química , Fumonisinas/química , Ácido Fusárico/química , Fusarium/classificação , Análise de Componente Principal , Especificidade da Espécie , Espectrometria de Massas em Tandem , Tricotecenos/química
3.
Front Microbiol ; 7: 395, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27064760

RESUMO

Mycotoxins, as microbial secondary metabolites, frequently contaminate cereal grains and pose a serious threat to human and animal health around the globe. Deoxynivalenol (DON), a commonly detected Fusarium mycotoxin, has drawn utmost attention due to high exposure levels and contamination frequency in the food chain. Biological control is emerging as a promising technology for the management of DON contamination. Functional biological control agents (BCAs), which include antagonistic microbes, natural fungicides derived from plants and detoxification enzymes, can be used to control DON contamination at different stages of grain production. In this review, studies regarding different biological agents for DON control in recent years are summarized for the first time. Furthermore, this article highlights the significance of BCAs for controlling DON contamination, as well as the need for more practical and efficient BCAs concerning food safety.

4.
Appl Opt ; 52(14): 3166-71, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23669828

RESUMO

A fluid-filled two-mode photonic crystal fiber (PCF)-based intermodal interferometer and its sensing characteristics are demonstrated and investigated. The interferometer works from the interference between LP(01) and LP(11) core modes of the fluid-filled PCF. Solutions to enhance the temperature sensitivity of the interferometer are also discussed. Via choosing a higher fluid-filled length ratio of PCF, a sensitivity of more than -340 pm/°C at 1480 nm is achieved, which is the highest value for a PCF intermodal interferometer-based sensor, to our best knowledge. Furthermore, there exist significant differences in temperature and strain sensitivity for two different interference dips, thus the interferometer can be used as a dual-parameter sensor with a compact structure through matrix demodulation.

5.
Opt Express ; 20(12): 13320-5, 2012 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-22714360

RESUMO

A novel fiber sensor capable of simultaneously measuring force and temperature is proposed and investigated. A section of high-index-fluid-filled photonic bandgap fiber (HIFF-PBGF) is inserted in a fiber loop to act as the sensing head. Photonic bandgap effect of the HIFF-PBGF as well as Fabry-Perot interferometer (FPI) introduced by controlling the splicing between the HIFF-PBGF and single mode fiber is used for achieving force and temperature discrimination. Taking advantage of the bandgap being high sensitivity to the temperature, a high temperature sensitivity of more than -1.94 dB/°C is achieved, which is the highest based on the intensity measurement, to our best knowledge. Meanwhile, a force sensitivity of 3.25 nm/N (~3.9 pm/µÎµ) is obtained, which could be enhanced by controlling the FPI shape. The device also has the strong points of easy fabrication, compact structure and high interference fringe contrast.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA