Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 18(12): 8934-8951, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38483284

RESUMO

Spinal cord injury is a disease that causes severe damage to the central nervous system. Currently, there is no cure for spinal cord injury. Azithromycin is commonly used as an antibiotic, but it can also exert anti-inflammatory effects by down-regulating M1-type macrophage genes and up-regulating M2-type macrophage genes, which may make it effective for treating spinal cord injury. Bone mesenchymal stem cells possess tissue regenerative capabilities that may help promote the repair of the injured spinal cord. In this study, our objective was to explore the potential of promoting repair in the injured spinal cord by delivering bone mesenchymal stem cells that had internalized nanoparticles preloaded with azithromycin. To achieve this objective, we formulated azithromycin into nanoparticles along with a trans-activating transcriptional activator, which should enhance nanoparticle uptake by bone mesenchymal stem cells. These stem cells were then incorporated into an injectable hydrogel. The therapeutic effects of this formulation were analyzed in vitro using a mouse microglial cell line and a human neuroblastoma cell line, as well as in vivo using a rat model of spinal cord injury. The results showed that the formulation exhibited anti-inflammatory and neuroprotective effects in vitro as well as therapeutic effects in vivo. These results highlight the potential of a hydrogel containing bone mesenchymal stem cells preloaded with azithromycin and trans-activating transcriptional activator to mitigate spinal cord injury and promote tissue repair.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Traumatismos da Medula Espinal , Regeneração da Medula Espinal , Ratos , Humanos , Animais , Hidrogéis/farmacologia , Azitromicina/farmacologia , Traumatismos da Medula Espinal/tratamento farmacológico , Medula Espinal , Anti-Inflamatórios/farmacologia
2.
Int J Nanomedicine ; 18: 5159-5181, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37705869

RESUMO

Background: Flurbiprofen axetil (FA) is a non-steroidal anti-inflammatory drug with good analgesic and anti-inflammatory effects. However, it suffers from poor solubility, short circulation time, and off-target binding profile, which significantly limit its clinical application. Here, we loaded FA into stealth lipid microspheres modified with the arginine-glycine-aspartic acid (RGD) peptide (cRGD-FA-SLM), and examined the therapeutic potential of the resulting platform for the treatment of rheumatoid arthritis (RA). Methods: cRGD-FA-SLM was prepared by high pressure homogenization, and its toxicity and uptake by macrophages were examined using cultures of RAW264.7 cells. Hemolysis and hepatotoxicity tests were performed to assess the safety of the developed platform, while its pharmacokinetics, biodistribution, and therapeutic efficacy were investigated in a collagen-induced arthritis rat model. Results: cRGD-FA-SLM showed homogeneous spherical morphology and efficient encapsulation of FA. The developed platform was non-toxic to normal macrophages and was selectively internalized by lipopolysaccharide-activated macrophages in vitro, while it distributed mainly to arthritic joints and significantly prolonged FA in circulation in vivo. cRGD-FA-SLM also significantly reduced the expression of prostaglandin E2 and alleviated joint edema and bone erosion, showing prolonged analgesic effects in arthritic rats. Conclusion: cRGD-FA-SLM shows good inflammation-targeting ability and prolongs drug circulation in vivo, suggesting promise as an anti-inflammatory and analgesic agent for targeted RA treatment.


Assuntos
Artrite Reumatoide , Nanosferas , Animais , Ratos , Distribuição Tecidual , Artrite Reumatoide/tratamento farmacológico , Dinoprostona
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA