Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 7072, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34873161

RESUMO

Renewable energy-based electrocatalytic hydrogenation of acetylene to ethylene (E-HAE) under mild conditions is an attractive substitution to the conventional energy-intensive industrial process, but is challenging due to its low Faradaic efficiency caused by competitive hydrogen evolution reaction. Herein, we report a highly efficient and selective E-HAE process at room temperature and ambient pressure over the Cu catalyst. A high Faradaic efficiency of 83.2% for ethylene with a current density of 29 mA cm-2 is reached at -0.6 V vs. the reversible hydrogen electrode. In-situ spectroscopic characterizations combined with first-principles calculations reveal that electron transfer from the Cu surface to adsorbed acetylene induces preferential adsorption and hydrogenation of the acetylene over hydrogen formation, thus enabling a highly selective E-HAE process through the electron-coupled proton transfer mechanism. This work presents a feasible route for high-efficiency ethylene production from E-HAE.

2.
Innovation (Camb) ; 2(3): 100144, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34557781

RESUMO

Decoupled electrolysis of water is a promising strategy for peak load regulation of electricity. The key to developing this technology is to construct decoupled devices containing stable redox mediators and corresponding efficient catalysts, which remains a considerable challenge. Herein, we designed a high-performance device, using polysulfides as mediators and graphene-encapsulated CoNi as catalysts. It produced H2 with a low potential of 0.82 V at 100 mA/cm2, saving 60.2% more energy than direct water electrolysis. The capacity of H2 production reached 2.5×105 mAh/cm2, which is the highest capacity reported so far. This device exhibited excellent cyclability in 15-day recycle tests, without any decay of performance. The calculation results revealed that the electronic structure of the graphene shell was modulated by the electron transfer from N-dopant and metal core, which significantly facilitated recycle of polysulfides on graphene surfaces. This study provides a promising method for constructing a smart grid by developing efficient decoupled devices.

3.
Skelet Muscle ; 11(1): 17, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34229732

RESUMO

BACKGROUND: Cancer cachexia (CAC) reduces patient survival and quality of life. Developments of efficient therapeutic strategies are required for the CAC treatments. This long-term process could be shortened by the drug-repositioning approach which exploits old drugs approved for non-cachexia disease. Amiloride, a diuretic drug, is clinically used for treatments of hypertension and edema due to heart failure. Here, we explored the effects of the amiloride treatment for ameliorating muscle wasting in murine models of cancer cachexia. METHODS: The CT26 and LLC tumor cells were subcutaneously injected into mice to induce colon cancer cachexia and lung cancer cachexia, respectively. Amiloride was intraperitoneally injected daily once tumors were formed. Cachexia features of the CT26 model and the LLC model were separately characterized by phenotypic, histopathologic and biochemical analyses. Plasma exosomes and muscle atrophy-related proteins were quantitatively analyzed. Integrative NMR-based metabolomic and transcriptomic analyses were conducted to identify significantly altered metabolic pathways and distinctly changed metabolism-related biological processes in gastrocnemius. RESULTS: The CT26 and LLC cachexia models displayed prominent cachexia features including decreases in body weight, skeletal muscle, adipose tissue, and muscle strength. The amiloride treatment in tumor-bearing mice distinctly alleviated muscle atrophy and relieved cachexia-related features without affecting tumor growth. Both the CT26 and LLC cachexia mice showed increased plasma exosome densities which were largely derived from tumors. Significantly, the amiloride treatment inhibited tumor-derived exosome release, which did not obviously affect exosome secretion from non-neoplastic tissues or induce observable systemic toxicities in normal healthy mice. Integrative-omics revealed significant metabolic impairments in cachectic gastrocnemius, including promoted muscular catabolism, inhibited muscular protein synthesis, blocked glycolysis, and impeded ketone body oxidation. The amiloride treatment evidently improved the metabolic impairments in cachectic gastrocnemius. CONCLUSIONS: Amiloride ameliorates cachectic muscle wasting and alleviates cancer cachexia progression through inhibiting tumor-derived exosome release. Our results are beneficial to understanding the underlying molecular mechanisms, shedding light on the potentials of amiloride in cachexia therapy.


Assuntos
Neoplasias do Colo , Exossomos , Amilorida/farmacologia , Animais , Caquexia/tratamento farmacológico , Caquexia/etiologia , Caquexia/patologia , Humanos , Camundongos , Músculo Esquelético/patologia , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Qualidade de Vida
4.
J Am Chem Soc ; 141(4): 1665-1671, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30608680

RESUMO

Perovskite solar cells are strong competitors for silicon-based ones, but suffer from poor long-term stability, for which the intrinsic stability of perovskite materials is of primary concern. Herein, we prepared a series of well-defined cesium-containing mixed cation and mixed halide perovskite single-crystal alloys, which enabled systematic investigations on their structural stabilities against light, heat, water, and oxygen. Two potential phase separation processes are evidenced for the alloys as the cesium content increases to 10% and/or bromide to 15%. Eventually, a highly stable new composition, (FAPbI3)0.9(MAPbBr3)0.05(CsPbBr3)0.05, emerges with a carrier lifetime of 16 µs. It remains stable during at least 10 000 h water-oxygen and 1000 h light stability tests, which is very promising for long-term stable devices with high efficiency. The mechanism for the enhanced stability is elucidated through detailed single-crystal structure analysis. Our work provides a single-crystal-based paradigm for stability investigation, leading to the discovery of stable new perovskite materials.

5.
Nat Commun ; 10(1): 86, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30622261

RESUMO

Traditional water-gas shift reaction provides one primary route for industrial production of clean-energy hydrogen. However, this process operates at high temperatures and pressures, and requires additional separation of H2 from products containing CO2, CH4 and residual CO. Herein, we report a room-temperature electrochemical water-gas shift process for direct production of high purity hydrogen (over 99.99%) with a faradaic efficiency of approximately 100%. Through rational design of anode structure to facilitate CO diffusion and PtCu catalyst to optimize CO adsorption, the anodic onset potential is lowered to almost 0 volts versus the reversible hydrogen electrode at room temperature and atmospheric pressure. The optimized PtCu catalyst achieves a current density of 70.0 mA cm-2 at 0.6 volts which is over 12 times that of commercial Pt/C (40 wt.%) catalyst, and remains stable for even more than 475 h. This study opens a new and promising route of producing high purity hydrogen.

6.
Angew Chem Int Ed Engl ; 57(50): 16339-16342, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30312507

RESUMO

Electrocatalytic CO2 reduction to CO emerges as a potential route of utilizing emitted CO2 . Metal-N-C hybrid structures have shown unique activities, however, the active centers and reaction mechanisms remain unclear because of the ambiguity in true atomic structures for the prepared catalysts. Herein, combining density-functional theory calculations and experimental studies, the reaction mechanisms for well-defined metal-N4 sites were explored using metal phthalocyanines as model catalysts. The theoretical calculations reveal that cobalt phthalocyanine exhibits the optimum activity for CO2 reduction to CO because of the moderate *CO binding energy at the Co site, which accommodates the *COOH formation and the *CO desorption. It is further confirmed by experimental studies, where cobalt phthalocyanine delivers the best performance, with a maximal CO Faradaic efficiency reaching 99 %, and maintains stable performance for over 60 hours.

7.
Nat Commun ; 8: 14430, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28401882

RESUMO

Hydrogen production through water splitting has been considered as a green, pure and high-efficient technique. As an important half-reaction involved, hydrogen evolution reaction is a complex electrochemical process involving liquid-solid-gas three-phase interface behaviour. Therefore, new concepts and strategies of material design are needed to smooth each pivotal step. Here we report a multiscale structural and electronic control of molybdenum disulfide foam to synergistically promote the hydrogen evolution process. The optimized three-dimensional molybdenum disulfide foam with uniform mesopores, vertically aligned two-dimensional layers and cobalt atoms doping demonstrated a high hydrogen evolution activity and stability. In addition, density functional theory calculations indicate that molybdenum disulfide with moderate cobalt doping content possesses the optimal activity. This study demonstrates the validity of multiscale control in molybdenum disulfide via overall consideration of the mass transport, and the accessibility, quantity and capability of active sites towards electrocatalytic hydrogen evolution, which may also be extended to other energy-related processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA