Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Adv Mater ; 35(36): e2301531, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37279363

RESUMO

Nano-/microplastics accumulate in aquatic bodies and raise increasing threats to ecosystems and human health. The limitation of existing water cleanup strategies, especially in the context of nano-/microplastics, primarily arises from their complexity (morphological, compositional, and dimensional). Here, highly efficient and bio-based flowthrough capturing materials (bioCap) are reported to remove a broad spectrum of nano-/microplastics from water: polyethylene terephthalate (anionic, irregular shape), polyethylene (net neutral, irregular shape), polystyrene (anionic and cationic, spherical shape), and other anionic and spherical shaped particles (polymethyl methacrylate, polypropylene, and polyvinyl chloride). Highly efficient bioCap systems that adsorb the ubiquitous particles released from beverage bags are demonstrated. As evidence of removal from drinking water, the in vivo biodistribution of nano-/microplastics is profiled, confirming a significant reduction of particle accumulation in main organs. The unique advantage of phenolic-mediated multi-molecular interactions is employed in sustainable, cost-effective, and facile strategies based on wood sawdust support for the removal of challenging nano-/microplastics pollutions.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Plásticos , Polifenóis , Ecossistema , Madeira/química , Distribuição Tecidual , Monitoramento Ambiental , Água
2.
STAR Protoc ; 4(1): 102067, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36853736

RESUMO

Traditional techniques for pollutant removal (e.g., static absorption and membrane nanofiltration) are either time consuming or energy intensive with limited permeances. Here, we demonstrate a protocol to fabricate polyamide (PA)-based regenerable adsorption-based membranes (PArab) for ultrafast removal of antibiotics. This protocol describes how to determine the distribution of nanocoatings through the membrane. We also detail the antibiotics removal performance and the regeneration tests. For complete details on the use and execution of this protocol, please refer to Wang et al. (2023).1.


Assuntos
Antibacterianos , Membranas
3.
iScience ; 26(2): 105932, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36698722

RESUMO

A better understanding of the molecular mechanism involving the lncRNA-miRNA-mRNA network underlying radiation damage can be beneficial for radioprotection. This study was designed to investigate the potential role of lncRNA NEAT1, miR-147 and Phosphoinositide Dependent Protein Kinase 1 (PDPK1) interaction in radioprotection by troxerutin (TRT). We first demonstrated that NEAT1 sponged miR-147, and PDPK1 mRNA was the primary target of miR-147. In the cells, the NEAT1 and PDPK1 levels were downregulated after the radiation but increased after the treatment with TRT. The miR-147 level was significantly induced by radiation and inhibited by TRT. NEAT1 negatively regulated the expression of miR-147, whereas miR-47 targeted PDPK1 to downregulate its expression. In radioprotection, TRT effectively upregulated NEAT1 to inhibit miR-147 and to upregulate PDPK1. We concluded that TRT could promote radioprotection by stimulating NEAT1 to upregulate PDPK1 expression by suppressing miR-147. NEAT1 could be a critical therapeutic target of radiation damage.

4.
Phytomedicine ; 104: 154317, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35816993

RESUMO

BACKGROUND: In response to radiation injury, p65 becomes activated. The formation of p65 is one target of Onjisaponin B (OB), but it has not been studied in radioprotection. In addition, there is a binding site for p65 in the promoter region of Cas3. This study evaluates the use of OB as an intervention to modulate p65/Cas3 following radiation exposure. PURPOSE: This study aimed to confirm that OB regulated the transcription of Cas3 via p65 to overcome radiation-induced damage. STUDY DESIGN AND METHODS: Cells and mice were exposed to X-rays at a dose of 6 Gy. Immunofluorescence was used to locate intracellular p65. For the protein and mRNA analyses, Western blotting and RT-qPCR-based assays were conducted accordingly. HE staining was used to observe pathological changes in tissues. DNA damage was detected by the comet assay and DNA ladder assay. Next, apoptosis was detected by flow cytometry and Hoechst staining. RESULTS: Compared with the radiation group, the expression levels of p-p65 and c-Cas3 in the drug group were significantly down-regulated by OB 20 µg/ml. When the expression of p65 was suppressed in V79 and TC cells, OB did not significantly inhibit the activation of p65 or Cas3 in response to irradiation, nor did it significantly inhibit the phosphorylation of p65 and subsequent nuclear translocation. Overexpression of p65 in V79 and MTEC-1 cells resulted in OB significantly inhibiting the activation of p65 and Cas3, and the phosphorylation and translocation of p65 into the nucleus. At 3 d for V79 cells and 24 h for MTEC-1 cells after radiation, compared with the Cas3 over plasmid transfection group, the drug transfection group had no significant effect on reducing apoptosis. In p65+/- mice, expression of the p65 gene was knocked down, leading to increased tissue apoptosis and inflammation, and serious tissue pathological changes. The inhibition of p65 activation by OB after radiation exposure was not apparent in the thymus, although it was observed in the lung. CONCLUSIONS: OB interfered with radiation injury by targeting and regulating p65/Cas3. Therefore, it has been concluded that p65 is an important target molecule for the treatment of radiation injury.


Assuntos
Proteínas Associadas a CRISPR , Lesões por Radiação , Animais , Apoptose , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/farmacologia , Camundongos , NF-kappa B/metabolismo , Fosforilação , Saponinas , Fator de Transcrição RelA/metabolismo , Triterpenos
5.
Aging (Albany NY) ; 12(16): 16368-16389, 2020 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-32862153

RESUMO

This study aimed to evaluate the role of FRT in ROS/DNA regulation with or without PARP-1 in radiation-injured thymus cells. The administration of FRT to PARP-1-/- (KO) mice demonstrated that FRT significantly increased the viability of thymus cells and decreased their rate of apoptosis through PARP-1. Radiation increased the levels of ROS, γ-H2AX and 53BP1, and induced DNA double strand breaks. Compared with wild type (WT) mice, levels of ROS, γ-H2AX and 53BP1 in KO mice were much less elevated. The FRT treatment groups also showed little reduction in these indicators in KO mice compared with WT mice. The results of the KO mice study indicated that FRT reduced ROS activation through inhibition of PARP-1. Furthermore, FRT reduced the concentrations of γ-H2AX by decreasing ROS activation. However, we found that FRT did not regulate 53BP1, a marker of DNA damage, because of its elimination of ROS. Levels of apoptosis-inducing factor (AIF), exhibited no significant difference after irradiation in KO mice. To summarize, ROS suppression by PARP-1 knockout in KO mice highlights potential therapeutic target either by PARP-1 inhibition combined with radiation or by treatment with a drug therapy alone. AIF-induced apoptosis could not be activated in KO mice.


Assuntos
Antioxidantes/farmacologia , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Flavonoides/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Rosa , Timo/efeitos dos fármacos , Animais , Antioxidantes/isolamento & purificação , Apoptose/efeitos dos fármacos , Fator de Indução de Apoptose/metabolismo , Células Cultivadas , Flavonoides/isolamento & purificação , Histonas/metabolismo , Camundongos Knockout , Estresse Oxidativo/efeitos da radiação , Poli(ADP-Ribose) Polimerase-1/deficiência , Poli(ADP-Ribose) Polimerase-1/genética , Rosa/química , Timo/metabolismo , Timo/patologia , Timo/efeitos da radiação , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
6.
Sensors (Basel) ; 19(23)2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31795502

RESUMO

Deep learning-based aircraft detection methods have been increasingly implemented in recent years. However, due to the multi-resolution imaging modes, aircrafts in different images show very wide diversity on size, view and other visual features, which brings great challenges to detection. Although standard deep convolution neural networks (DCNN) can extract rich semantic features, they destroy the bottom-level location information. The features of small targets may also be submerged by redundant top-level features, resulting in poor detection. To address these problems, we proposed a compact multi-scale dense convolutional neural network (MS-DenseNet) for aircraft detection in remote sensing images. Herein, DenseNet was utilized for feature extraction, which enhances the propagation and reuse of the bottom-level high-resolution features. Subsequently, we combined feature pyramid network (FPN) with DenseNet to form a MS-DenseNet for learning multi-scale features, especially features of small objects. Finally, by compressing some of the unnecessary convolution layers of each dense block, we designed three new compact architectures: MS-DenseNet-41, MS-DenseNet-65, and MS-DenseNet-77. Comparative experiments showed that the compact MS-DenseNet-65 obtained a noticeable improvement in detecting small aircrafts and achieved state-of-the-art performance with a recall of 94% and an F1-score of 92.7% and cost less computational time. Furthermore, the experimental results on robustness of UCAS-AOD and RSOD datasets also indicate the good transferability of our method.

7.
Sensors (Basel) ; 18(11)2018 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-30453696

RESUMO

The Gaofen-3 (GF-3) satellite is the first C-band multi-polarization synthetic aperture radar (SAR) with the ability of high-accuracy mapping in China. However, the Ground Control Points (GCPs) are essential to ensure the accuracy of mapping for GF-3 SAR imagery at present. In this paper, we analyze the error sources that affect the geometric processing and propose a new block adjustment method without GCPs for GF-3 SAR imagery. Firstly, the geometric calibration of GF-3 image is carried out. Secondly, the rational polynomial coefficient (RPC) model is directly generated after the geometric calibration parameters compensation of each image. Finally, we solve the orientation parameters of the GF-3 images through DEM assisted planar block adjustment and conduct ortho-rectification. With two different imaging modes of GF-3 satellite, which include the QPSI and FS2, we carry out the block adjustment without GCPs. Experimental results of testing areas including Wuhan city and Hubei province in China show that the geometric mosaic accuracy and the absolute positioning accuracy of the orthophoto are better than one pixel, which has laid a good foundation for the application of GF-3 image in global high-accuracy mapping.

8.
Sensors (Basel) ; 18(7)2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-30004440

RESUMO

The evaluation of geometric accuracy of high-resolution satellite images (HRSIs) has been increasingly recognized in recent years. The traditional approach is to verify each satellite individually. It is difficult to directly compare the difference in their accuracy. In order to evaluate geometric accuracy for multiple satellite images based on the same ground control benchmark, a reliable test field in Xianning (China) was utilized for geometric accuracy validation of HRSIs. Our research team has obtained multiple HRSIs in the Xianning test field, such as SPOT-6, Pleaides, ALOS, ZY-3 and TH-1. In addition, ground control points (GCPs) were acquired with GPS by field surveying, which were used to select the significant feature area on the images. We assess the orientation accuracy of the HRSIs with the single image and stereo models. Within this study, the geometrical performance of multiple HRSIs was analyzed in detail, and the results of orientation are shown and discussed. As a result, it is feasible and necessary to establish such a geometric verification field to evaluate the geometric quality of multiple HRSIs.

9.
Sensors (Basel) ; 17(9)2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28862658

RESUMO

The GaoFen-3 (GF-3) satellite is the first C-band multi-polarization synthetic aperture radar (SAR) imaging satellite with a resolution up to 1 m in China. It is also the only SAR satellite of the High-Resolution Earth Observation System designed for civilian use. There are 12 different imaging models to meet the needs of different industry users. However, to use SAR satellite images for related applications, they must possess high geometric accuracy. In order to verify the geometric accuracy achieved by the different modes of GF-3 images, we analyze the SAR geometric error source and perform geometric correction tests based on the RPC model with and without ground control points (GCPs) for five imaging modes. These include the spotlight (SL), ultra-fine strip (UFS), Fine Strip I (FSI), Full polarized Strip I (QPSI), and standard strip (SS) modes. Experimental results show that the check point residuals are large and consistent without GCPs, but the root mean square error of the independent checkpoints for the case of four corner control points is better than 1.5 pixels, achieving a similar level of geometric positioning accuracy to that of international satellites. We conclude that the GF-3 satellite can be used for high-accuracy geometric processing and related industry applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA