Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Small ; : e2403920, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148188

RESUMO

Ideal bandgap (1.3-1.4 eV) Sn-Pb mixed perovskite solar cells (PSC) hold the maximum theoretical efficiency given by the Shockley-Queisser limit. However, achieving high efficiency and stable Sn-Pb mixed PSCs remains challenging. Here, piperazine-1,4-diium tetrafluoroborate (PDT) is introduced as spacer for bottom interface modification of ideal bandgap Sn-Pb mixed perovskite. This spacer enhances the quality of the upper perovskite layer and forms better energy band alignment, leading to enhanced charge extraction at the hole transport layer (HTL)/perovskite interface. Then, 2D Ti3C2Tx MXene is incorporated for surface treatment of perovskite, resulting in reduced surface trap density and enhanced interfacial electron transfer. The combinations of double-sided treatment afford the ideal bandgap PSC with a high efficiency of 20.45% along with improved environment stability. This work provides a feasible guideline to prepare high-performance and stable ideal-bandgap PSCs.

2.
Front Microbiol ; 15: 1424825, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39206363

RESUMO

Carbendazim (methyl benzimidazol-2-ylcarbamate, CBZ) is a systemic benzimidazole carbamate fungicide and can be used to control a wide range of fungal diseases caused by Ascomycetes, Basidiomycetes and Deuteromycetes. It is widely used in horticulture, forestry, agriculture, preservation and gardening due to its broad spectrum and leads to its accumulation in soil and water environmental systems, which may eventually pose a potential threat to non-target organisms through the ecological chain. Therefore, the removal of carbendazim residues from the environment is an urgent problem. Currently, a number of physical and chemical treatments are effective in degrading carbendazim. As a green and efficient strategy, microbial technology has the potential to degrade carbendazim into non-toxic and environmentally acceptable metabolites, which in turn can dissipate carbendazim from the contaminated environment. To date, a number of carbendazim-degrading microbes have been isolated and reported, including, but not limited to, Bacillus, Pseudomonas, Rhodococcus, Sphingomonas, and Aeromonas. Notably, the common degradation property shared by all strains was their ability to hydrolyze carbendazim to 2-aminobenzimidazole (2-AB). The complete mineralization of the degradation products is mainly dependent on the cleavage of the imidazole and benzene rings. Additionally, the currently reported genes for carbendazim degradation are MheI and CbmA, which are responsible for breaking the ester and amide bonds, respectively. This paper reviews the toxicity, microbial degradation of carbendazim, and bioremediation techniques for carbendazim-contaminated environments. This not only summarizes and enriches the theoretical basis of microbial degradation of carbendazim, but also provides practical guidance for bioremediation of carbendazim-contaminated residues in the environment.

3.
J Dent Sci ; 19(3): 1506-1514, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39035341

RESUMO

Background/purpose: While there are numerous reports on surgical techniques and materials for bone grafting, limited methods are available to enhance the body's inherent capacity to heal bones. Here we investigated microRNA-199a (miR-199a), a molecular that promotes osteoblast differentiation and bone healing. Materials and methods: To construct a miR-199a delivery complex, miR-199a-5p mimics were coated with mesoporous silica nanoparticles (MSNs) following modified with polyethyleneimine (PEI) and peptide WEAKLAKALAKALAKHLAKALAKALKACEA (KALA) to obtain 199a-5p-loaded MSN-PEI-KALA. Nanoparticle complexes are assessed for particle size and zeta potential using transmission electron microscopy and dynamic light scattering. Then MC3T3-E1 cells are exposed to MSN_miR-199a-5p @PEI-KALA. The impact of MSN_miR-199a-5p@PEI-KALA at varying concentrations on cell viability is assessed using Cell Counting Kit-8. Cell uptake and distribution were analyzed by double fluorescent staining with fluorescein amidite-labeled MSN_miR-199a@PEI-KALA and lysosome labeling. On day 7 after osteogenic induction, alkaline phosphatase (ALP) staining was conducted. Results: The findings indicated that the nanoparticle complexes encapsulating PEI and peptide exhibited an augmentation in both particle size and zeta potential. At a dosage of 10 µg/mL, MSN_miR-199a@PEI-KALA displayed the lowest cytotoxicity compared to the control group. MC3T3-E1 cells treated with MSN_miR-199a-5p@PEI-KALA exhibited intensified ALP staining and elevated mRNA expression levels of ALP, runt-related transcription factor 2, and osteopontin, suggesting the involvement of miR-199a-5p-loaded MSN-PEI-KALA in osteogenic differentiation. Conclusion: The successful construction of the delivering complex MSN_miR-199a@PEI-KALA in present research highlights the promise of this biomaterial carrier for the application of miRNAs in treating bone defects.

4.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38960407

RESUMO

The optimization of therapeutic antibodies through traditional techniques, such as candidate screening via hybridoma or phage display, is resource-intensive and time-consuming. In recent years, computational and artificial intelligence-based methods have been actively developed to accelerate and improve the development of therapeutic antibodies. In this study, we developed an end-to-end sequence-based deep learning model, termed AttABseq, for the predictions of the antigen-antibody binding affinity changes connected with antibody mutations. AttABseq is a highly efficient and generic attention-based model by utilizing diverse antigen-antibody complex sequences as the input to predict the binding affinity changes of residue mutations. The assessment on the three benchmark datasets illustrates that AttABseq is 120% more accurate than other sequence-based models in terms of the Pearson correlation coefficient between the predicted and experimental binding affinity changes. Moreover, AttABseq also either outperforms or competes favorably with the structure-based approaches. Furthermore, AttABseq consistently demonstrates robust predictive capabilities across a diverse array of conditions, underscoring its remarkable capacity for generalization across a wide spectrum of antigen-antibody complexes. It imposes no constraints on the quantity of altered residues, rendering it particularly applicable in scenarios where crystallographic structures remain unavailable. The attention-based interpretability analysis indicates that the causal effects of point mutations on antibody-antigen binding affinity changes can be visualized at the residue level, which might assist automated antibody sequence optimization. We believe that AttABseq provides a fiercely competitive answer to therapeutic antibody optimization.


Assuntos
Complexo Antígeno-Anticorpo , Aprendizado Profundo , Complexo Antígeno-Anticorpo/química , Antígenos/química , Antígenos/genética , Antígenos/metabolismo , Antígenos/imunologia , Afinidade de Anticorpos , Sequência de Aminoácidos , Biologia Computacional/métodos , Humanos , Mutação , Anticorpos/química , Anticorpos/imunologia , Anticorpos/genética , Anticorpos/metabolismo
5.
Research (Wash D C) ; 7: 0408, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39055686

RESUMO

Protein loop modeling is a challenging yet highly nontrivial task in protein structure prediction. Despite recent progress, existing methods including knowledge-based, ab initio, hybrid, and deep learning (DL) methods fall substantially short of either atomic accuracy or computational efficiency. To overcome these limitations, we present KarmaLoop, a novel paradigm that distinguishes itself as the first DL method centered on full-atom (encompassing both backbone and side-chain heavy atoms) protein loop modeling. Our results demonstrate that KarmaLoop considerably outperforms conventional and DL-based methods of loop modeling in terms of both accuracy and efficiency, with the average RMSDs of 1.77 and 1.95 Å for the CASP13+14 and CASP15 benchmark datasets, respectively, and manifests at least 2 orders of magnitude speedup in general compared with other methods. Consequently, our comprehensive evaluations indicate that KarmaLoop provides a state-of-the-art DL solution for protein loop modeling, with the potential to hasten the advancement of protein engineering, antibody-antigen recognition, and drug design.

6.
Environ Geochem Health ; 46(9): 349, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073492

RESUMO

Given environmental persistence, potential for bioaccumulation, and toxicity of Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), the scientific community has increasingly focused on researching their toxicology and degradation methods. This paper presents a survey of recent research advances in the toxicological effects and degradation methods of PFOA and PFOS. Their adverse effects on the liver, nervous system, male reproductive system, genetics, and development are detailed. Additionally, the degradation techniques of PFOA and PFOS, including photochemical, photocatalytic, and electrochemical methods, are analyzed and compared, highlighted the potential of these technologies for environmental remediation. The biotransformation pathways and mechanisms of PFOA and PFOS involving microorganisms, plants, and enzymes are also presented. As the primary green degradation pathway for PFOA and PFOS, Biodegradation uses specific microorganisms, plants or enzymes to remove PFOA and PFOS from the environment through redox reactions, enzyme catalysis and other pathways. Currently, there has been a paucity of research conducted on the biodegradation of PFOA and PFOS. However, this degradation technology is promising owing to its specificity, cost-effectiveness, and ease of implementation. Furthermore, novel materials/methods for PFOA and PFOS degradation are presented in this paper. These novel materials/methods effectively improve the degradation efficiency of PFOA and PFOS and provide new ideas and tools for the degradation of PFOA and PFOS. This information can assist researchers in identifying flaws and gaps in the field, which can facilitate the formulation of innovative research ideas.


Assuntos
Ácidos Alcanossulfônicos , Biodegradação Ambiental , Caprilatos , Fluorocarbonos , Fluorocarbonos/metabolismo , Caprilatos/metabolismo , Ácidos Alcanossulfônicos/metabolismo , Ácidos Alcanossulfônicos/toxicidade , Poluentes Ambientais/metabolismo , Poluentes Ambientais/toxicidade , Animais , Química Verde/métodos
7.
Adv Mater ; 36(30): e2402947, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38743762

RESUMO

Tin (Sn) -based perovskite solar cells (PSCs) normally show low open circuit voltage due to serious carrier recombination in the devices, which can be attributed to the oxidation and the resultant high p-type doping of the perovskite active layers. Considering the grand challenge to completely prohibit the oxidation of Sn-based perovskites, a feasible way to improve the device performance is to counter-dope the oxidized Sn-based perovskites by replacing Sn2+ with trivalent cations in the crystal lattice, which however is rarely reported. Here, the introduction of Sb3+, which can effectively counter-dope the oxidized perovskite layer and improve the carrier lifetime, is presented. Meanwhile, Sb3+ can passivate deep-level defects and improve carrier mobility of the perovskite layer, which are all favorable for the photovoltaic performance of the devices. Consequently, the target devices yield a relative enhancement of the power conversion efficiency (PCE) of 31.4% as well as excellent shelf-storage stability. This work provides a novel strategy to improve the performance of Sn-based PSCs, which can be developed as a universal way to compensate for the oxidation of Sn-based perovskites in optoelectronic devices.

8.
Medicine (Baltimore) ; 103(5): e37153, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306566

RESUMO

As a global malignancy with high mortality rate, targeted drug development for Uterine Cervical Neoplasms is an important direction. The traditional formula Guizhi Fuling Wan (GFW) is widely used in gynecological diseases. However, its potential mechanism of action remains to be discovered. We retrieved GFW and cervical squamous cell carcinoma (CSCC) targets from public databases. The protein-protein interaction network was obtained by string computational analysis and imported Cytoscape_v3.9.0 to obtain the core network and the top 10 Hub genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were used for enrichment analysis of the core network, and then molecular docking to verify whether the selected signaling pathway binds well to the core node. Finally, clinical prognostic analysis and expression differences of Hub genes were validated using the Cancer Genome Atlas database and R language. Our search yielded 152 common targets for GFW and CSCC. The interleukin-17 signaling pathway, tumor necrosis factor signaling pathway, and Toll-like signaling pathway were then selected for further molecular docking from the hub genes enrichment analysis results, which showed good binding. Among the Hub genes, JUN, VEGFA, IL1B, and EGF had a poor prognosis for CSCC. In conclusion, this study illustrates that GFW can have adjuvant therapeutic effects on CSCC through multiple targets and multiple pathways, providing a basis for further research.


Assuntos
Carcinoma de Células Escamosas , Medicamentos de Ervas Chinesas , Neoplasias do Colo do Útero , Humanos , Feminino , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Simulação de Acoplamento Molecular , Biologia Computacional
9.
Adv Mater ; 36(16): e2311970, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38198824

RESUMO

[4-(3,6-dimethyl-9H-carbazol-9yl)butyl]phosphonic acid (Me-4PACz) self-assembled molecules (SAM) are an effective method to solve the problem of the buried interface of NiOx in inverted perovskite solar cells (PSCs). However, the Me-4PACz end group (carbazole core) cannot forcefully passivate defects at the bottom of the perovskite film. Here, a Co-SAM strategy is employed to modify the buried interface of PSCs. Me-4PACz is doped with phosphorylcholine chloride (PC) to form a Co-SAM to improve the monolayer coverage and reduce leakage current. The phosphate group and chloride ions (Cl-) in PC can inhibit NiOx surface defects. Meantime, the quaternary ammonium ions and Cl- in PC can fill organic cations and halogen vacancies in the perovskite film to enable defects passivation. Moreover, Co-SAM can promote the growth of perovskite crystals, collaboratively solve the problem of buried defects, suppress nonradiative recombination, accelerate carrier transmission, and relieve the residual stress of the perovskite film. Consequently, the Co-SAM modified devices show power conversion efficiencies as high as 25.09% as well as excellent device stability with 93% initial efficiency after 1000 h of operation under one-sun illumination. This work demonstrates the novel approach for enhancing the performance and stability of PSCs by modifying Co-SAM on NiOx.

10.
Comput Biol Med ; 169: 107815, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128254

RESUMO

Anaplastic lymphoma kinase (ALK) is implicated in the genesis of multiple malignant tumors. Lorlatinib stands out as the most advanced and effective inhibitor currently used in the clinic for the treatment of ALK-positive non-small cell lung cancer. However, resistance to lorlatinib has inevitably manifested over time, with double/triple mutations of G1202, L1196, L1198, C1156 and I1171 frequently observed in clinical practice, and tumors regrow within a short time after treatment with lorlatinib. Therefore, elucidating the mechanism of resistance to lorlatinib is paramount in paving the way for innovative therapeutic strategies and the development of next-generation drugs. In this study, we leveraged multiple computational methodologies to delve into the resistance mechanisms of three specific double mutations of ALKG1202R/L1196M, ALKG1202R/L1198F and ALKI1171N/L1198F to lorlatinib. We analyzed these mechanisms through qualitative (PCA, DCCM) and quantitative (MM/GBSA, US) kinetic analyses. The qualitative analysis shows that these mutations exert minimal perturbations on the conformational dynamics of the structural domains of ALK. The energetic and structural assessments show that the van der Waals interactions, formed by the conserved residue Leu1256 within the ATP-binding site and the residues Glu1197 and Met1199 in the hinge domain with lorlatinib, play integral roles in the occurrence of drug resistance. Furthermore, the US simulation results elucidate that the pathways through which lorlatinib dissociates vary across mutant systems, and the distinct environments during the dissociation process culminate in diverse resistance mechanisms. Collectively, these insights provide important clues for the design of novel inhibitors to combat resistance.


Assuntos
Aminopiridinas , Carcinoma Pulmonar de Células não Pequenas , Lactamas , Neoplasias Pulmonares , Pirazóis , Humanos , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Quinase do Linfoma Anaplásico/genética , Quinase do Linfoma Anaplásico/metabolismo , Resistencia a Medicamentos Antineoplásicos , Lactamas/farmacologia , Lactamas/uso terapêutico , Lactamas Macrocíclicas/farmacologia , Lactamas Macrocíclicas/uso terapêutico , Neoplasias Pulmonares/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirazóis/farmacologia , Pirazóis/uso terapêutico
11.
J Orthop Surg Res ; 18(1): 942, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066577

RESUMO

BACKGROUND: Aquatic exercise (AE) is becoming ever more popular as a physical therapy, while it is unclear what precise improvements it will produce and how effective it will be in comparison with other non-surgical therapies. The study aimed to assess whether AE positively impacts chronic musculoskeletal disorder patients in terms of pain, physical function, and quality of life. METHODS: PRISMA guidelines were followed, and our study protocol was published online at PROSPERO under registration number CRD42023417411. We searched PubMed, Embase, Web of Science, and Cochrane library databases for English-language articles published before April 11, 2023, including studies from all relevant randomized controlled trials (RCTs). After screening, we ultimately included 32 RCTs with a total of 2,200 participants. We also performed subgroup analyses for all included studies. This meta-analysis calculated standardized mean difference (SMD) with 95% confidence interval (CI), and the variance was estimated using a random-effects model. The quality of the included studies was assessed by using the Cochrane collaborative "risk of bias" assessment tool (version 2.0). Thus ensuring that the literature included is of high quality. RESULTS: This meta-analysis included 32 trials with 2,200 participants; these patients were all between the ages of 38-80. The study showed that compared to the no exercise (NE) group, patients in the AE group experienced a remarkable reduction in pain (SMD: -0.64, P < 0.001), a significant increase in physical function (SMD: 0.62, P < 0.001), and a statistically significant improvement in quality of life (SMD: -0.64, P < 0.001). When compared to land-based exercise (LE), AE significantly relieves patients' pain (SMD: -0.35, P = 0.03). CONCLUSIONS: This is the first systematic review and meta-analysis to study whether AE could improve chronic musculoskeletal disorders. The evidence suggests that AE benefits pain, physical function, and quality of life in adults with chronic musculoskeletal conditions compared to NE. Furthermore, when compared to LE, AE continues to provide a better improvement in patient pain. More long-term clinical trials are needed to confirm AE's positive effects and improvement mechanisms and the more existential advantages compared to LE.


Assuntos
Exercício Físico , Doenças Musculoesqueléticas , Adulto , Humanos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Ensaios Clínicos Controlados Aleatórios como Assunto , Doença Crônica , Doenças Musculoesqueléticas/terapia , Dor , Terapia por Exercício/métodos
12.
Opt Lett ; 48(23): 6120-6123, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039206

RESUMO

Praseodymium (Pr) lasers have achieved outstanding pico- and sub-picosecond pulsations covering the near-infrared (NIR) and visible spectral range in recent years. However, it has been a stagnant task for more than two decades to leapfrog into the sub-100 femtosecond (fs) regime as the Pr gain bandwidths are too narrow for their major transition lines. Although the wide tunability at the NIR bands in the Pr:YLF crystals has been explored, the spectral tails in these transitions suffer severely from weak gains for mode locking, combined with the intricate dispersion control to achieve transform-limit formation. In this work, we target the Pr:YLF's 895-nm line with a specially designed edge-pass filter to balance the gain bandwidth and transitional strength. By deploying a symmetric dispersion scheme and tuning with the soft actor-critic artificial intelligence (AI) algorithm, we have achieved the pulse duration down to sub-100-fs in a Pr laser for the first time. This work also enriches the AI-assisted methodology for ultrafast solid-state laser realizations.

13.
J Neuroinflammation ; 20(1): 264, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968698

RESUMO

BACKGROUND: Lipid metabolism has a crucial role in neural repair in neurodegenerative diseases. We recently revealed that lipogenesis-mediated interleukin-33 (IL-33) upregulation lead to blood-brain barrier (BBB) repair after ischemic stroke. However, manipulating the key enzyme fatty acid synthase (FASN) to enhance lipogenesis was very challenging. Glyceryl triacetate (GTA) was used as a donor of acetate and precursor of acetyl coenzyme A, the key substrate for de novo lipogenesis catalyzed by FASN. Therefore, we hypothesized that GTA would promote lipogenesis the peri-infarct after ischemic stroke and contribute to the BBB repair through IL-33. METHODS: Middle cerebral artery occlusion (MCAO) was performed on C57BL mice and GTA was gavage administrated (4 g/kg) on day 2 and 4 after MCAO. Lipogenesis was evaluated by assessment of the protein level of FASN, lipid droplets, and fatty acid products through liquid chromatography-mass spectrometry in the peri-infarct area on day 3 after MCAO, respectively. BBB permeability was determined by extravasation of Evans blue, IgG and dextran, and levels of tight junction proteins in the peri-infarct area on day 7 after MCAO, respectively. Infarct size and neurological defects were assessed on day 7 after MCAO. Brain atrophy on day 30 and long-term sensorimotor abilities after MCAO were analyzed as well. The inhibitor of FASN, C75 and the virus-delivered FASN shRNA were used to evaluate the role of FASN-driven lipogenesis in GTA-improved BBB repair. Finally, the therapeutic potential of recombinant IL-33 on BBB repair and neurological recovery was evaluated. RESULTS: We found that treatment with GTA increased the lipogenesis as evidenced by lipid droplets level and lauric acid content, but not the FASN protein level. Treatment with GTA increased the IL-33 level in the peri-infarct area and decreased the BBB permeability after MCAO. However, infarct size and neurological defect score were unchanged on day 7 after MCAO, while the long-term recovery of sensorimotor function and brain atrophy were improved by GTA. Inhibition of lipogenesis using C75 or FASN shRNA reversed the beneficial effect of GTA. Finally, exogenous IL-33 improved BBB repair and long-term functional recovery after stroke. CONCLUSION: Collectively, we concluded that treatment with GTA improved the BBB repair and functional recovery after ischemic stroke, probably by the enhancement of lipogenesis and IL-33 expression.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Camundongos , Animais , AVC Isquêmico/patologia , Barreira Hematoencefálica , Interleucina-33/farmacologia , Lipogênese , Camundongos Endogâmicos C57BL , Acidente Vascular Cerebral/patologia , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , RNA Interferente Pequeno/metabolismo , Atrofia/patologia , Isquemia Encefálica/metabolismo
14.
BMC Pediatr ; 23(1): 571, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974127

RESUMO

BACKGROUND: Whether cesarean section (CS) is a risk factor for asthma in offspring is controversial. The purpose of this study was to investigate the association between CS and asthma in children/adolescents. METHODS: Pubmed, Embase, Web of Science, and Cochrane Library electronic databases were searched for cohort studies on the relationship between mode of delivery and asthma in children/adolescents up to February 2023. Birth via CS was considered an exposure factor. Asthma incidence was taken as a result. RESULTS: Thirty-five cohort studies (thirteen prospective and twenty-two retrospective cohort studies) were included. The results showed that the incidence of asthma was higher in CS offspring (odds ratio (OR) = 1.18, P < 0.001) than in the vaginal delivery (VD) group. Partial subgroup analyses showed a higher incidence of asthma in female offspring born via CS (OR = 1.26, P < 0.001) compared with the VD group, while there was no difference in males (OR = 1.07, P = 0.325). Asthma incidence was higher in CS offspring than in the VD group in Europe (OR = 1.20, P < 0.001), North America (OR = 1.15, P < 0.001), and Oceania (OR = 1.06, P = 0.008). This trend was not found in the Asian population (OR = 1.17, P = 0.102). The incidence of atopic asthma was higher in offspring born via CS (OR = 1.14, P < 0.001) compared to the VD group. The CS group had a higher incidence of persistent asthma, but the difference did not reach statistical significance (OR = 1.15, P = 0.063). CONCLUSION: In this meta-analysis, CS may be a risk factor for asthma in offspring children/adolescents compared with VD. The relationship between CS and asthma was influenced by sex and region.


Assuntos
Asma , Cesárea , Masculino , Criança , Feminino , Adolescente , Humanos , Gravidez , Cesárea/efeitos adversos , Estudos Retrospectivos , Estudos Prospectivos , Estudos de Coortes , Asma/epidemiologia , Asma/etiologia
15.
Int J Dermatol ; 62(11): 1332-1344, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37681467

RESUMO

This study aimed to investigate the relationship between statin (lipophilic statin and hydrophilic statin) exposure and the risk of skin cancer. The incidence of skin cancer under statin exposure was used as the primary outcome, and the relevant studies were screened from Web of Science, PubMed, Cochrane Library, and EBSCO electronic database until September 2022. Ten observational studies and two randomized controlled trials (RCTs) were included. The statistical results indicated that in lipophilic statins, the exposed group had a higher risk of skin cancer than the non-exposed group (OR: 1.09, P = 0.003). However, compared with the non-exposed group, there was no significant difference between hydrophilic statins exposure and the incidence of skin cancer (OR: 1.02, P = 0.341). Further subgroup analysis of the subtypes of statins revealed that compared with the non-exposed group, exposure to lovastatin (OR: 1.18, P = 0.048) or simvastatin (OR: 1.11, P < 0.001) was a risk factor for skin cancer. Besides, subgroup analysis based on the subtypes of skin cancer demonstrated that the risks of melanoma (OR: 1.13, P = 0.009), basal cell carcinoma (BCC) (OR: 1.05, P = 0.036), and squamous cell carcinoma (SCC) (OR: 1.13, P = 0.026) under lipophilic statin exposure were significantly higher than those in the non-exposed group. On the contrary, compared with the non-exposed group, the risk of BCC was significantly reduced under the exposure of hydrophilic statins (OR: 0.93, P = 0.031). This study showed that the relationship between statin exposure and skin cancer risk was affected by the subtypes of statins and skin cancer subtypes.


Assuntos
Carcinoma Basocelular , Inibidores de Hidroximetilglutaril-CoA Redutases , Neoplasias Cutâneas , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Lovastatina , Sinvastatina/efeitos adversos , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/epidemiologia , Carcinoma Basocelular/induzido quimicamente , Carcinoma Basocelular/epidemiologia
16.
Brief Bioinform ; 24(5)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37738401

RESUMO

Cracking the entangling code of protein-ligand interaction (PLI) is of great importance to structure-based drug design and discovery. Different physical and biochemical representations can be used to describe PLI such as energy terms and interaction fingerprints, which can be analyzed by machine learning (ML) algorithms to create ML-based scoring functions (MLSFs). Here, we propose the ML-based PLI capturer (ML-PLIC), a web platform that automatically characterizes PLI and generates MLSFs to identify the potential binders of a specific protein target through virtual screening (VS). ML-PLIC comprises five modules, including Docking for ligand docking, Descriptors for PLI generation, Modeling for MLSF training, Screening for VS and Pipeline for the integration of the aforementioned functions. We validated the MLSFs constructed by ML-PLIC in three benchmark datasets (Directory of Useful Decoys-Enhanced, Active as Decoys and TocoDecoy), demonstrating accuracy outperforming traditional docking tools and competitive performance to the deep learning-based SF, and provided a case study of the Serine/threonine-protein kinase WEE1 in which MLSFs were developed by using the ML-based VS pipeline in ML-PLIC. Underpinning the latest version of ML-PLIC is a powerful platform that incorporates physical and biological knowledge about PLI, leveraging PLI characterization and MLSF generation into the design of structure-based VS pipeline. The ML-PLIC web platform is now freely available at http://cadd.zju.edu.cn/plic/.


Assuntos
Algoritmos , Benchmarking , Ligantes , Desenho de Fármacos , Aprendizado de Máquina
17.
Sci Rep ; 13(1): 13767, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612462

RESUMO

Neuroinflammation manifests following injury to the central nervous system (CNS) and M1/M2 polarization of microglia is closely associated with the development of this neuroinflammation. In this study, multiple databases were used to collect targets regarding luteolin and microglia polarization. After obtaining a common target, a protein-protein interaction (PPI) network was created and further analysis was performed to obtain the core network. Molecular docking of the core network with luteolin after gene enrichment analysis. In vitro experiments were used to examine the polarization of microglia and the expression of related target proteins. A total of 77 common targets were obtained, and the core network obtained by further analysis contained 38 proteins. GO and KEGG analyses revealed that luteolin affects microglia polarization in regulation of inflammatory response as well as the interleukin (IL)-17 and tumor necrosis factor (TNF) signaling pathways. Through in vitro experiments, we confirmed that the use of luteolin reduced the expression of inducible nitric oxide synthase (iNOS), IL-6, TNF-α, p-NFκBIA (p-IκB-α), p-NFκB p65, and MMP9, while upregulating the expression of Arg-1 and IL-10. This study reveals various potential mechanisms by which luteolin induces M2 polarization in microglia to inhibit the neuroinflammatory response.


Assuntos
Luteolina , Microglia , Humanos , Luteolina/farmacologia , Farmacologia em Rede , Simulação de Acoplamento Molecular , Doenças Neuroinflamatórias
18.
J Med Chem ; 66(13): 9174-9183, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37317043

RESUMO

Machine-learning-based scoring functions (MLSFs) have gained attention for their potential to improve accuracy in binding affinity prediction and structure-based virtual screening (SBVS) compared to classical SFs. Developing accurate MLSFs for SBVS requires a large and unbiased dataset that includes structurally diverse actives and decoys. Unfortunately, most datasets suffer from hidden biases and data insufficiency. Here, we developed topology-based and conformation-based decoys database (ToCoDDB). The biological targets and active ligands in ToCoDDB were collected from scientific literature and established datasets. The decoys were generated and debiased by using conditional recurrent neural networks and molecular docking. ToCoDDB is presently the largest unbiased database with 2.4 million decoys encompassing 155 targets. The detailed information and performance benchmark for each target are provided, which are beneficial for training and evaluating MLSFs. Moreover, the online decoys generation function of ToCoDDB further expands its application range to any target. ToCoDDB is freely available at http://cadd.zju.edu.cn/tocodecoy/.


Assuntos
Benchmarking , Aprendizado de Máquina , Simulação de Acoplamento Molecular , Conformação Molecular , Bases de Dados Factuais , Ligantes , Ligação Proteica
19.
Cancer Lett ; 567: 216285, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37354982

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is characterized by hypoxia and hypovascular tumor microenvironment. Nucleolar and spindle associated protein 1 (NUSAP1) is a microtubule-associated protein that is known to be involved in cancer biology. Our study aimed to investigate the role of NUSAP1 in glycolytic metabolism and metastasis in PDAC. Expression and prognostic value of NUSAP1 in PDAC and common gastrointestinal tumors was evaluated. The function of NUSAP1 in PDAC progression was clarified by single-cell RNA-seq and further experiments in vitro, xenograft mouse model, spontaneous PDAC mice model and human tissue microarray. The downstream genes and signaling pathways regulated by NUSAP1 were explored by RNA-Seq. And the regulation of NUSAP1 on Lactate dehydrogenase A (LDHA)-mediated glycolysis and its underlying mechanism was further clarified by CHIP-seq. NUSAP1 was an independent unfavorable predictor of PDAC prognosis that playing a critical role in metastasis of PDAC by regulating LDHA-mediated glycolysis. Mechanically, NUSAP1 could bind to c-Myc and HIF-1α that forming a transcription regulatory complex localized to LDHA promoter region and enhanced its expression. Intriguingly, lactate upregulated NUSAP1 expression by inhibiting NUSAP1 protein degradation through lysine lactylated (Kla) modification, thus forming a NUSAP1-LDHA-glycolysis-lactate feedforward loop. The NUSAP1-LDHA-glycolysis-lactate feedforward loop is one of the underlying mechanisms to explain the metastasis and glycolytic metabolic potential in PDAC, which also provides a novel insights to understand the Warburg effect in cancer. Targeting NUSAP1 would be an attractive paradigm for PDAC treatment.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Lactato Desidrogenase 5/genética , Lactato Desidrogenase 5/metabolismo , Linhagem Celular Tumoral , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Proteínas Associadas aos Microtúbulos/metabolismo , Glicólise/genética , Lactatos , Regulação Neoplásica da Expressão Gênica , L-Lactato Desidrogenase/genética , Proliferação de Células , Microambiente Tumoral , Neoplasias Pancreáticas
20.
Metab Brain Dis ; 38(6): 2037-2053, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37119382

RESUMO

Anesthetics such as sevoflurane are commonly administered to infants and children. However, the possible neurotoxicity caused by prolonged or repetitive exposure to it should be a concern. The neuroprotective effects of metformin are observed in many models of neurological disorders. In this study, we investigated whether metformin could reduce the developmental neurotoxicity induced by sevoflurane exposure in neonatal rats and the potential mechanism. Postnatal day 7 (PND 7) Sprague-Dawley rats and neural stem cells (NSCs) were treated with normal saline or metformin before sevoflurane exposure. The Morris water maze (MWM) was used to observe spatial memory and learning at PND 35-42. Immunofluorescence staining was used to detect neurogenesis in the subventricular zone (SVZ) of the lateral ventricle and the subgranular zone (SGZ) of the dentate gyrus at PND 14. MTT assays, immunofluorescence staining, and TUNEL staining were used to assess the viability, proliferation, differentiation, and apoptosis of NSCs. Western blotting and ELISA were used to assess the protein expression of cleaved caspase-3, nuclear factor erythroid 2-related factor 2 (Nrf2), and glucose-6-phosphate dehydrogenase (G6PD) pathway-related molecules. Exposure to sevoflurane resulted in late cognitive defects, impaired neurogenesis in both the SVZ and SGZ, reduced NSC viability and proliferation, increased NSC apoptosis, and decreased protein expression of G6PD in vitro. Metformin pretreatment attenuated sevoflurane-induced cognitive functional decline and neurogenesis inhibition. Metformin pretreatment also increased the protein expression of Nrf2 and G6PD. However, treatment with the Nrf2 inhibitor, ML385 or the G6PD inhibitor, dehydroepiandrosterone (DHEA) reversed the protective effect of metformin on sevoflurane-induced NSC damage in vitro. Our findings suggested that metformin could reduce sevoflurane-induced neurogenesis damage and neurocognitive defects in the developing rat brain by influencing the Nrf2/G6PD signaling pathways.


Assuntos
Disfunção Cognitiva , Fator 2 Relacionado a NF-E2 , Animais , Ratos , Sevoflurano/farmacologia , Ratos Sprague-Dawley , Fator 2 Relacionado a NF-E2/metabolismo , Animais Recém-Nascidos , Glucosefosfato Desidrogenase/efeitos adversos , Glucosefosfato Desidrogenase/metabolismo , Neurogênese , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Hipocampo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA