Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
J Environ Manage ; 365: 121632, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38950506

RESUMO

Hermetia illucens larvae showcases remarkable bioremediation capabilities for both antibiotics and heavy metal contaminants. However, the distinctions in larval intestinal microbiota arising from the single and combined effects of antibiotics and heavy metals remain poorly elucidated. In this study, we delved into the details of larval intestinal bacterial communities and microbial metabolites when exposed to single and combined contaminants of oxytetracycline (OTC) and hexavalent chromium (Cr(VI)). After conversion, single contaminant-spiked substrate showed 75.5% of OTC degradation and 95.2% of Cr(VI) reductiuon, while combined contaminant-spiked substrate exhibited 71.3% of OTC degradation and 93.4% of Cr(VI) reductiuon. Single and combined effects led to differences in intestinal bacterial communities, mainly reflected in the genera of Enterococcus, Pseudogracilibacillus, Gracilibacillus, Wohlfahrtiimonas, Sporosarcina, Lysinibacillus, and Myroide. Moreover, these effects also induced differences across various categories of microbial metabolites, which categorized into amino acid and its metabolites, benzene and substituted derivatives, carbohydrates and its metabolites, heterocyclic compounds, hormones and hormone-related compounds, nucleotide and its metabolites, and organic acid and its derivatives. In particular, the differences induced OTC was greater than that of Cr(VI), and combined effects increased the complexity of microbial metabolism compared to that of single contaminant. Correlation analysis indicated that the bacterial genera, Preudogracilibacillus, Enterococcus, Sporosarcina, Lysinibacillus, Wohlfahrtiimonas, Ignatzschineria, and Fusobacterium exhibited significant correlation with significant differential metabolites, these might be used as indicators for the resistance and bioremediation of OTC and Cr(VI) contaminants. These findings are conducive to further understanding that the metabolism of intestinal microbiota determines the resistance of Hermetia illucens to antibiotics and heavy metals.


Assuntos
Antibacterianos , Biodegradação Ambiental , Microbioma Gastrointestinal , Larva , Metais Pesados , Animais , Antibacterianos/farmacologia , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Microbioma Gastrointestinal/efeitos dos fármacos , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Cromo/metabolismo
2.
Microorganisms ; 12(6)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38930425

RESUMO

Root rot caused by Fusarium spp. is the most destructive disease on Atractylodes lancea, one of the large bulks and most common traditional herbal plants in China. In this study, we isolated a bacterial strain, CF3, from the rhizosphere soil of A. lancea and determined its inhibitory effects on F. oxysporum in both in vitro and in vivo conditions. To deeply explore the biocontrol potential of CF3, we sequenced the whole genome and investigated the key pathways for the biosynthesis of many antibiotic compounds. The results revealed that CF3 is a member of Burkholderia ambifaria, harboring two chromosomes and one plasmid as other strains in this species. Five antibiotic compounds were found that could be synthesized due to the existence of the bio-synthesis pathways in the genome. Furthermore, the synthesis of antibiotic compounds should be confirmed by in vitro experiments and novel compounds should be purified and characterized in further studies.

3.
Sci Total Environ ; 946: 174224, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914334

RESUMO

Hermetia illucens larvae can enhance the degradation of oxytetracycline (OTC) through its biotransformation. However, the underlying mechanisms mediated by gut metabolites and proteins are unclear. To gain further insights, the kinetics of OTC degradation, the functional structures of gut bacterial communities, proteins, and metabolites were investigated. An availability-adjusted first-order model effectively evaluated OTC degradation kinetics, with degradation half-lives of 4.18 and 21.71 days for OTC degradation with and without larval biotransformation, respectively. Dominant bacteria in the larval guts were Enterococcus, Psychrobacter, Providencia, Myroides, Enterobacteriaceae, and Lactobacillales. OTC exposure led to significant differential expression of proteins, with functional classification revealing involvement in digestion, transformation, and adaptability to environmental stress. Upregulated proteins, such as aromatic ring hydroxylase, acted as oxidoreductases modifying the chemical structure of OTC. Unique metabolites, aclarubicin and sancycline identified were possible OTC metabolic intermediates. Correlation analysis revealed significant interdependence between gut bacteria, metabolites, and proteins. These findings reveal a synergistic mechanism involving gut microbial metabolism and enzyme structure that drives the rapid degradation of OTC and facilitates the engineering applications of bioremediation.

4.
Front Immunol ; 15: 1384946, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835784

RESUMO

Breast cancer has a high incidence and a heightened propensity for metastasis. The absence of precise targets for effective intervention makes it imperative to devise enhanced treatment strategies. Exosomes, characterized by a lipid bilayer and ranging in size from 30 to 150 nm, can be actively released by various cells, including those in tumors. Exosomes derived from distinct subsets of immune cells have been shown to modulate the immune microenvironment within tumors and influence breast cancer progression. In addition, tumor-derived exosomes have been shown to contribute to breast cancer development and progression and may become a new target for breast cancer immunotherapy. Tumor immunotherapy has become an option for managing tumors, and exosomes have become therapeutic vectors that can be used for various pathological conditions. Edited exosomes can be used as nanoscale drug delivery systems for breast cancer therapy, contributing to the remodeling of immunosuppressive tumor microenvironments and influencing the efficacy of immunotherapy. This review discusses the regulatory role of exosomes from different cells in breast cancer and the latest applications of exosomes as nanoscale drug delivery systems and immunotherapeutic agents in breast cancer, showing the development prospects of exosomes in the clinical treatment of breast cancer.


Assuntos
Neoplasias da Mama , Exossomos , Imunoterapia , Microambiente Tumoral , Exossomos/imunologia , Exossomos/metabolismo , Humanos , Neoplasias da Mama/terapia , Neoplasias da Mama/imunologia , Feminino , Imunoterapia/métodos , Microambiente Tumoral/imunologia , Animais , Sistemas de Liberação de Medicamentos
5.
J Fungi (Basel) ; 10(5)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38786706

RESUMO

Atractylodes lancea is a perennial herb whose rhizome (AR) is a valuable traditional Chinese medicine with immense market demand. The cultivation of Atractylodes lancea faces outbreaks of root rot and deterioration in herb quality due to complex causes. Here, we investigated the effects of Trichoderma spp., well-known biocontrol agents and plant-growth-promoters, on ARs. We isolated Trichoderma strains from healthy ARs collected in different habitats and selected three T. harzianum strains (Th2, Th3 and Th4) with the strongest antagonizing effects on root rot pathogens (Fusarium spp.). We inoculated geo-authentic A. lancea plantlets with Th2, Th3 and Th4 and measured the biomass and quality of 70-day-old ARs. Th2 and Th3 promoted root rot resistance of A. lancea. Th2, Th3 and Th4 all boosted AR quality: the concentration of the four major medicinal compounds in ARs (atractylon, atractylodin, hinesol and ß-eudesmol) each increased 1.6- to 18.2-fold. Meanwhile, however, the yield of ARs decreased by 0.58- to 0.27-fold. Overall, Th3 dramatically increased the quality of ARs at a relatively low cost, namely lower yield, showing great potential for practical application. Our results showed selectivity between A. lancea and allochthonous Trichoderma isolates, indicating the importance of selecting specific microbial patches for herb cultivation.

6.
Sci Total Environ ; 924: 171674, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38479533

RESUMO

Hermetia illucens larvae are recognized for their ability to mitigate or eliminate contaminants by biodegradation. However, the biodegradation characteristics of microplastics and phthalic acid esters plasticizers, as well as the role of larval gut microorganisms, have remained largely unrevealed. Here, the degradation kinetics of plasticizers, and biodegradation characteristics of microplastics were examined. The role of larval gut microorganisms was investigated. For larval development, microplastics slowed larval growth significantly (P < 0.01), but the effect of plasticizer was not significant. The degradation kinetics of plasticizers were enhanced, resulting in an 8.11 to 20.41-fold decrease in degradation half-life and a 3.34 to 3.82-fold increase in final degradation efficiencies, compared to degradation without larval participation. The depolymerization and biodeterioration of microplastics were conspicuously evident, primarily through a weight loss of 17.63 %-25.52 %, variation of chemical composition and structure, bio-oxidation and bioerosion of microplastic surface. The synergistic effect driven by larval gut microorganisms, each with various functions, facilitated the biodegradation. Specifically, Ignatzschineria, Paenalcaligenes, Moheibacter, Morganella, Dysgonomonas, Stenotrophomonas, Bacteroides, Sphingobacterium, etc., appeared to be the key contributors, owing to their xenobiotic biodegradation and metabolism functions. These findings offered a new perspective on the potential for microplastics and plasticizers biodegradation, assisted by larval gut microbiota.


Assuntos
Dípteros , Microplásticos , Ácidos Ftálicos , Animais , Larva , Plásticos , Plastificantes , Dípteros/microbiologia , Ésteres
7.
Biomed Chromatogr ; 38(4): e5818, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38230827

RESUMO

To optimize the extraction process of crude polysaccharides from Atractylodes and elaborate the mechanism of Atractylodes polysaccharides in treating diarrhea owing to spleen deficiency, so as to lay a foundation for further development and utilization of Atractylodes lancea, we used an orthogonal test to optimize the extraction process and established a model of spleen deficiency. It was further combined with histopathology and intestinal flora to elaborate the mechanism of Atractylodes polysaccharides in the treatment of spleen-deficiency diarrhea. The optimized extraction conditions were as follows: the ratio of material to liquid was 1:25; the rotational speed was 150 rpm; the extraction temperature was 60°C; the extraction time was 2 h; and the extraction rate was about 23%. The therapeutic effect of Atractylodes polysaccharides on a spleen-deficiency diarrhea model in mice showed that the water content of stools and diarrhea grade in the treatment group were alleviated, and the levels of gastrin, motilin and d-xylose were improved. The analysis results based on gut microbiota showed that the model group had a higher diversity of gut microbiota than the normal group and treatment group, and the treatment group could correct the diversity of gut microbiota in model mice. Analysis based on the level of phylum and genus showed that the treatment group could inhibit the abundance of Helicobacter pylori genus and increase beneficial bacteria genera. The conclusion was that the optimized extraction process of Atractylodes polysaccharides was reasonable and feasible, and had a good therapeutic effect on spleen deficiency diarrhea.


Assuntos
Atractylodes , Microbioma Gastrointestinal , Camundongos , Animais , Baço , Atractylodes/química , Rizoma/química , Polissacarídeos , Diarreia/tratamento farmacológico
8.
Plant Dis ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38127629

RESUMO

Astragalus mongholicus Bge. [A. membranaceus Bge. var. mongholicus (Bge.) Hsiao] is a highly valuable perennial medicinal plant mainly distributed in China, whose dry roots are known as Huangqi in traditional Chinese medicine for reinforcing vital energy, strengthening superficial resistance, and promoting tissue regeneration (Lin et al. 2000). A. mongholicus roots of high quality are produced in Northwest and North China. Since July 2021, powdery mildew outbreaks happened annually on the leaves of A. mongholicus in a plantation (123° 56' 40'' E, 47° 22' 20'' N) in Qiqihar city, Heilongjiang Province, China. Disease incidence reached 100% by October (Fig. 1A-C), causing severe impairment of growth. Powdery mildew spots of circular or irregular shapes emerged on upper surface of leaf, resulting in plentiful lesion specks. Dense white hyphae appeared chaotically intertwined. Hyphae were hyaline and highly flexuous, 5.3 - 10.7 µm in diameter (n = 20). Chasmothecia were globose or slightly ovoid-shaped and turned dark brown when matured. Chasmothecia (diameter: 135.2 - 222.9 µm, n = 20) existed abundantly on the diseased leaves in the fields. Conidiophores were 89.0 - 129.9 µm in length (n = 20) and composed of one cylindrical, straight foot cell, followed by two cells and one to three conidia. Conidia were slim ellipsoid-shaped, occasionally ovoid-shaped, measuring 14.6 - 24.7 µm by 6.4 to10.4 µm, length/width ratio was 1.8 - 3.0 (n = 30). Hyphal appressoria were nipple-shaped and appeared in singular, occasionally in pairs. Unbranched germ tube emerged reaching out of the germinating conidia while forming an acute angle with the long axis. Comprehensively, the pathogen exhibited micro-morphology of the genus Erysiphe. For molecular identification, pathogen was carefully scraped off diseased leaves for DNA extraction. We used the DNA samples of three biological replicates for the sequencing of the ITS rDNA fragment (primers by (White et al. 1990). All the samples resulted in an identical ITS sequence (deposited in GenBank as OQ390098.1). It displayed 99.83% identity with OP806835.1 of an E. astragali voucher collected in Iran (Fig. 1D-M, O). Hence, our pathogen was identified as an E. astragali stain. Additionally, we amplified the Mcm7 sequence (using primers by (Ellingham et al. 2019), deposited as OQ397582.1). We propagated 40-day-old A. mongholicus plants via germinating seeds in pot soil and performed pathogenicity tests. Firstly, we incubated detached healthy leaves of propagated plants with severely symptomatic leaves collected from the fields in petri dishes under saturated moisture content and room temperature. Powdery mildew symptoms emerged on each healthy leaf (n = 5) after two weeks. Further, we infected healthy plants (n = 5) by gently pressing and rubbing symptomatic leaves on each healthy leaf, and kept them in a greenhouse (24 ℃, 80% humidity, 16/8-hour light/dark cycle). After a month, symptoms emerged on a number of leaves of each infected plant. We performed micromorphology observation (Fig. 1N-P) and ITS sequencing to confirm that the results fulfilled Koch's postulates. Powdery mildew caused by E. astragali on A. strictus in Tibet (Wang and Jiang 2023) and on A. scaberrimus in Inner Mongolia (Sun et al. 2023) have been reported. Here we report powdery mildew caused by E. astragali on Astragalus mongholicus for the first time. These Astragalus spp. are all acknowledged to have medicinal values in China but their usages are quite different.

9.
Plants (Basel) ; 12(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38005778

RESUMO

Panax notoginseng (Burk.) F. H. Chen, a species of the genus Panax, radix has been traditionally used to deal with various hematological diseases and cardiovascular diseases since ancient times in East Asia. P. notoginseng produces recalcitrant seeds which are sensitive to desiccation and difficult to store for a long time. However, few data are available on the mechanism of the desiccation sensitivity of P. notoginseng seeds. To gain a comprehensive perspective of the genes associated with desiccation sensitivity, cDNA libraries from seeds under control and desiccation processes were prepared independently for Illumina sequencing. The data generated a total of 70,189,896 reads that were integrated and assembled into 55,097 unigenes with a mean length of 783 bp. In total, 12,025 differentially expressed genes (DEGs) were identified during the desiccation process. Among these DEGs, a number of central metabolism, hormonal network-, fatty acid-, and ascorbate-glutathione-related genes were included. Our data provide a comprehensive resource for identifying the genes associated with the desiccation sensitivity of P. notoginseng seeds.

10.
Plant Dis ; 2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37807087

RESUMO

Pinelliae rhizoma is the dried tuber of Pinellia ternata (Thunb.) Breit., and has been used for thousand of years in traditional Chinese medicine as an antivomit, anticough, and analgesic (Ying et al. 2007). In September 2022, P. ternata planted in Bijie, Guizhou Province, showed severe soft rot symptoms with incidence of about 50%. The diseased plants showed water-soaked symptoms and produced a foul soft rot smell, and finally the whole plant collapsed. Lesions were first observed at the tip of a leaf or wound, and symptoms of the disease spread rapidly, with the entire plant collapsing and dying within a week. The tissue sections of six plants with typical symptoms from the diseased field were disinfected with 75% ethanol for 30 seconds and 0.3% NaClO for 3 minutes. The tissue sections were then washed with sterile water for three times. A small piece of tissue (5x5mm) was removed from the edge of the lesion and mashed in a 1.5 ml centrifuge tube containing 20 µl of sterile water. The tissue liquid was then diluted 100 times with prepared sterile water. The bacteria were streaked on LB (tryptone/yeast extract/NaCl) AGAR medium and cultured at 37°C for 48 h (Kravitz, 1962). Isolated colonies were streaked on Luria-Bertani (LB) AGAR medium to obtain single colonies for further identification. A total of 13 representative isolates were selected for PCR amplification using primers targeting the conserved region of the 16S rDNA gene, which were in turn analyzed via the BLASTn search engine on the NCBI website. The results of the analysis revealed that seven of the isolates were similar to P. aroidearum strain SCRI 109 (GenBank accession no. NR_159926), with strain BX13 exhibiting the highest similarity to P. aroidearum (99.93% similarity), and therefore, this strain was selected for further investigation. The strain BX13 was incubated on LB solid medium for 24 h at 37 °C, and the single colonies were creamy white, translucent and round, slightly elevated in the center, with smooth surfaces and neat edges (Figure S1 B1). Then,the Scanning Electron Microscope revealed that the thalli of strain BX13 were short rod-shaped and somewhat blunt round at both ends (Figure S1 B2). The steward genes (icdA, gapA, proA) of BX13 were amplified and sequenced for further identification. The sequences of the amplified fragments were all deposited in GenBank 16S rDNA (OQ874505,) icdA (OQ954122),gapA (OQ954123), proA (OQ954124). Sequence analysis using the BLASTn program at the NCBI revealed gene icdA, gapA, and proA had 100% identity to P. aroidearum strain QJ002 (GenBank accession no. CP090597).. Meanwhile, a maximum likelihood phylogenetic tree was constructed based on multigene sequence analysis of BX13 16S rDNA and steward genes (gapA, icdA, proA) by MEGA X (Liang et al. 2022). Phylogenetic results also showed that BX13 and P. aroidearum strain QJ002 gathered in the same clade(Figure S2). Accordingly, the morphological and molecular characteristics of strain BX13 indicate that it is P. aroidearum. (Nabhan S., et al.2013,Xu et al. 2020). In order to confirm the pathogenicity of strain BX13, a bacterial suspension containing 107 CFU/ml (10 ml/ inoculation point) was injected into the base of a one-week-old P. ternata stems, control seedlings were inoculated with sterile water, inoculated and control seedlings (each of six plants) were kept in a growth chamber maintained at 26°C with a relative humidity range of 70% to 80%. Plants were watered as needed. After 3 days, the stem base of the plants inoculated with bacteria solution showed water-soaked necrosis and stems began to rot, while the plants inoculated with water did not show this symptom. The strains were then successfully re-isolated from the symptomatic P. ternata. Then the strain re-isolated was identified using the BLASTn program at the NCBI and found that it has the same 16S rDNA, icdA, gapA, and proA sequences as strain BX13, thus completing the Koch's postulates. To our knowledge, this is the first report of P. aroidearum causing P. ternata soft rot in China, which expands its known host range. Accordingly, this study provides essential information for the breeding of P. ternata resistant to bacterial soft rot and the development of control measures in China.

11.
Adv Sci (Weinh) ; 10(35): e2305239, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37875393

RESUMO

Janus membranes with asymmetric wettability have been considered cutting-edge for energy/environmental-sustainable applications like water/fog harvester, breathable skin, and smart sensor; however, technical challenges in fabrication and accurate regulation of asymmetric wettability limit their development. Herein, by using water-assisted hydrogen-bonded (H-bonded) assembly of small molecules at water/oil interface, a facile strategy is proposed for one-step fabrication of membranes with well-regulable asymmetric wettability. Asymmetric orderly patterns, beneficial for mass transport based on abundant high-permeability sites and large surface area, are constructed on opposite membrane surfaces. Upon tuning water-assisted H-bonding via H-sites/configuration design and temperature/pH modulation, double-hydrophobic, double-hydrophilic, and hydrophobic-hydrophilic membranes are facilely fabricated. The Janus membranes show smart vapor-responsive curling and unidirectional water transport with promising flux of 1158±25 L m-2  h-1 under natural gravity and 31500±670 L·(m-2  h-1  bar-1 ) at negative pressure. This bottom-up approach offers a feasible-to-scalable avenue to precise-manipulation of Janus membranes for advanced applications, providing an effective pathway for developing tailor-made self-assembled nanomaterials.

12.
J Colloid Interface Sci ; 652(Pt A): 122-131, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37591074

RESUMO

Metalloporphyrin compounds have excellent electron transfer and visible light absorption ability, demonstrating broad application prospects in the field of photocatalysis. In this work, the nitrogen vacancies (NVs) were successfully introduced into zinc porphyrin (ZnTCPP) ultrathin nanosheets through surface N2 plasma treatment, which is environmentally friendly and can react in low temperatures. Furthermore, the prepared nitrogen vacancies-zinc porphyrin (NVs-ZnTCPP) materials exhibited excellent photocatalytic CO2 reduction activity and selectivity, specifically, the CO production rate of ZnTCPP-1 (N2 plasma treatment, 1 min) achieved as high as 12.5 µmol g-1h-1, which is about 2.7 times greater than that of untreated ZnTCPP. Based on the experimental and density functional theory calculation (DFT) results, it is found that the promoted photocatalytic performance of NVs-ZnTCPP could be mainly attributed to nitrogen vacancy-induced spin polarization by reducing the reaction barriers and inhibiting the recombination of photoexcited carriers. This work provides a new perspective for the construction of vacancy-based metalloporphyrin, and further explores the intrinsic mechanism between the electron spin property and the performance of the photocatalyst.

13.
J Agric Food Chem ; 71(31): 11982-11992, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37523321

RESUMO

An integrated purification procedure through the LC-MS/MS-based molecular networking strategy combined with bioactive evaluation was first ushered for discovering bioactive ophiobolins from Bipolaris eleusines. Ophiobolins were mainly dispersed in five clusters, which were classified based on different ring systems and functional groups. Nine undescribed ophiobolins (1-6 and 9-11) and an undescribed natural product (8) along with two known analogs (7 and 12) were isolated in target. The undescribed structures were characterized by HR-ESI-MS, NMR spectra, and X-ray diffraction experiments. Compounds 3-12 exhibited strong phytotoxic effects on green foxtails by producing visible lesions, and compounds 1-10 and 12 displayed different levels of cytotoxic activities against cancer cell lines B16, Hep G2, and MCF-7, from which the possible structure-activity relationships were then suggested. The results have supported that bioactivity-guided molecular networking is an efficient strategy to expedite the discovery of undescribed bioactive natural products.


Assuntos
Sesterterpenos , Espectrometria de Massas em Tandem , Cromatografia Líquida , Sesterterpenos/farmacologia , Sesterterpenos/química , Estrutura Molecular
14.
Food Chem X ; 18: 100678, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37131848

RESUMO

The Chinese yam, an important orphan crop with both high nutrient and health promoting value, is mainly produced in the Yellow-Huai-Hai plain near the river basins in China. The protected designation of origin (PDO)-labeled Chinese yam differs greatly from others in market acceptance and price, which has led to fakes and the need for reliable authentication methods. Hence, stable isotope ratios of δ 13C, δ 15N, δ 2D, and δ 18O and 44 multielemental contents were used to explore the authentication of geographical origins and the effect of environmental factors. Twenty-two elements and δ 15N were selected as the key variables to authenticate Chinese yams from three river basins as well as to authenticate them among traditional PDOs and others in the Yellow River basin. Moreover, six environmental factors, including the moisture index, maximum temperature, photosynthetically active radiation, soil organic carbon, total nitrogen and pH, were found to be highly related to these variances.

15.
Zhongguo Zhong Yao Za Zhi ; 47(20): 5397-5405, 2022 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-36471953

RESUMO

Medicinal plants are the main source of clinical medication in traditional Chinese medicine(TCM). China has achieved large-scale cultivation and production of medicinal plants. As an important resource for the sustainable development of agriculture in the future, microorganisms can also promote the green, ecological and high-quality development of Chinese medicine agriculture. However, research on the medicinal plant microbiome is still limited. Therefore, based on the development timeline of microbiome research, the present study reviewed the origin, technology, and hotspots of microbiome research and proposed some suggestions for future research according to the advances in medicinal plant microbiome.(1)Systematic investigation of medicinal plant microbiome on the species, genus, and family levels should be carried out on the medicinal plants of different chemotypes in order to reveal the coevolution of the microorganisms and their host plants.(2)Spatial and temporal research on medicinal plant microbiome should be performed to reveal the effects of microorganisms on the growth, development, and secondary metabolite accumulation of medicinal plants, as well as the underlying mechanisms.(3)Model medicinal plant species should be selected and microorganism-plant interaction research models should be established.(4)Core microbiome of medicinal plants should be explored for the future application of crucial microbes in the sustaina-ble agriculture of Chinese medicine.(5)Breeding of medicinal plant-associated microbes should be carried out to lay the foundation for novel medicinal plant breeding strategies.(6)High-throughput sequencing, traditional incubation, and isolation of microbes should be combined to study medicinal plant microbiome, thereby promoting the exploitation and application of uncultured microbial strains.(7)Platforms for the preservation of medicinal plant-associated microbe strains and data of their metabolites should be established and the exchange of information and cooperation between these platforms should be subsequently enhanced. With these suggestions, the efficient and rapid development of medicinal plant microbiome research is expected to be promoted.


Assuntos
Microbiota , Plantas Medicinais , Melhoramento Vegetal , Medicina Tradicional Chinesa , Agricultura
16.
Front Plant Sci ; 13: 1029722, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36352878

RESUMO

In the Atractylodes lancea (A. lancea)-maize intercropping system, maize can promote the growth of A. lancea, but it is unclear whether this constitutes an aboveground or belowground process. In this study, we investigated the mechanisms of the root system interaction between A. lancea and maize using three different barrier conditions: no barrier (AI), nylon barrier (AN), and plastic barrier (AP) systems. The biomass, volatile oil concentration, physicochemical properties of the soil, and rhizosphere microorganisms of the A. lancea plant were determined. The results showed that (1) the A. lancea - maize intercropping system could promote the growth of A. lancea and its accumulation of volatile oils; (2) a comparison of the CK, AI, and AP treatments revealed that it was the above-ground effect of maize specifically that promoted the accumulation of both atractylon and atractylodin within the volatile oils of A. lancea, but inhibited the accumulation of hinesol and ß-eudesmol; (3) in comparing the soil physicochemical properties of each treatment group, intercropping maize acidified the root soil of A. lancea, changed its root soil physicochemical properties, and increased the abundance of the acidic rhizosphere microbes of A. lancea at the phylum level; (4) in an analysis of rhizosphere microbial communities of A. lancea under different barrier systems, intercropping was found to promote plant growth-promoting rhizobacteria (PGPR) enrichment, including Streptomyces, Bradyrhizobium, Candidatus Solibacter, Gemmatirosa, and Pseudolabrys, and the biomass of A. lancea was significantly influenced by PGPR. In summary, we found that the rhizosphere soil of A. lancea was acidified in intercropping with maize, causing the accumulation of PGPR, which was beneficial to the growth of A. lancea.

17.
Front Endocrinol (Lausanne) ; 13: 963520, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187105

RESUMO

Objective: This study aimed to explore the effectiveness of bioelectrical impedance spectroscopy in the identification of parathyroid glands during thyroid surgeries. Method: All patients who received thyroid surgeries at our department from January 2018 to February 2020 were recruited for this study. The bioelectrical impedance spectroscopy analyzer was applied to analyze on following tissues: thyroid tissues, lymph nodes, adipose tissues, and the tissues suspected to be parathyroid glands. Postoperative pathological reports were obtained as the golden standard to compare with the characteristic parameters obtained from bioelectrical impedance spectroscopy. The receiver operating characteristic curve analysis was used to assess the diagnostic value and the selection of the optimal threshold of these parameters from bioelectrical impedance spectroscopy. Results: A total of 512 patients were enrolled in the study and 1898 specimens were measured by the bioelectrical impedance spectroscopy analyzer. There were significant differences in the parameter of f c among parathyroid glands, thyroid tissues, lymph nodes, and adipose tissues (252.2 ± 45.8 vs 144.7 ± 26.1, 491.7 ± 87.4, 602.3 ± 57.3; P<0.001, P<0.001, P<0.001). The area under the receiver operating characteristic curves was 0.993 (95%CI: 0.989-0.996) for f c. When the diagnostic criterion of f c was set at 188.85 kHz~342.55 kHz, the sensitivity and specificity to identify parathyroid glands from lymph nodes and adipose tissues were both 100%. At this f c, the sensitivity and specificity to identify parathyroid glands from thyroid tissues were 91.1% and 99.0%, respectively. Conclusion: In conclusion, bioelectrical impedance spectroscopy could assist to differentiate parathyroid glands from peripheral tissues during thyroid surgeries.


Assuntos
Glândulas Paratireoides , Glândula Tireoide , Impedância Elétrica , Humanos , Linfonodos , Glândulas Paratireoides/cirurgia , Análise Espectral , Glândula Tireoide/patologia , Glândula Tireoide/cirurgia
18.
Front Plant Sci ; 13: 976813, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110364

RESUMO

Root rot disease caused by Fusarium oxysporum is a devastating disease of Salvia miltiorrhiza and dramatically affected the production and quality of Sa. miltiorrhiza. Besides the agricultural and chemical control, biocontrol agents can be utilized as an additional solution. In the present study, an actinomycete that highly inhibited F. oxysporum was isolated from rhizosphere soil and identified as based on morphological and molecular characteristics. Greenhouse assay proved that the strain had significant biological control effect against Sa. miltiorrhiza root rot disease and growth-promoting properties on Sa. miltiorrhiza seedlings. To elucidate the biocontrol and plant growth-promoting properties of St-220, we employed an analysis combining genome mining and metabolites detection. Our analyses based on genome sequence and bioassays revealed that the inhibitory activity of St-220 against F. oxysporum was associated with the production of enzymes targeting fungal cell wall and metabolites with antifungal activities. Strain St-220 possesses phosphate solubilization activity, nitrogen fixation activity, siderophore and indole-3-acetic acid production activity in vitro, which may promote the growth of Sa. miltiorrhiza seedlings. These results suggest that St. albidoflavus St-220 is a promising biocontrol agent and also a biofertilizer that could be used in the production of Sa. miltiorrhiza.

19.
Plant Dis ; 2022 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-36089690

RESUMO

Alpinia oxyphylla Miq. is mainly distributed in Hainan, Guangdong and Guangxi provinces of China. Between July and August 2021, a leaf spot disease was observed in Ledong, Hainan Province, China (18°70'20.50″ N, 109°25'25.47″E) on A.oxyphylla. The incidence of infected leaves ranged from 8% to 10%, and the incidence rate of infected plants was about 50%. Symptoms appeared as primary yellow-brown withered spots on the diseased leaves, which further developed into irregular red-brown spots. The center of the lesions was gray-black, and the tissue was irregularly necrotic, ruptured or perforated, and there were yellow chlorotic halos around the edges of the lesions (Figure 1A). Tissues 5 mm in diameter were taken from the junction of diseased and healthy tissue for pathogen isolation, Successively, a total of 8 isolates were obtained from the affected leaves. Three single spore isolates (YZ-HN-001, YZ-HN-043 and YZ-HN-051) were obtained and confirmed to be identical based on morphological characteristics. Therefore, the representative isolate YZ-HN-001 was selected for morphological and molecular identification. On Potato Dextrose Agar(PDA), the colony was gray-white at first and gradually turned dark green to dark brown with lead gray on the back, growth was slow, and mycelium was short and dense (Figure 1B and Figure 1C). Pycnidia were epiphyllous, globose, brown (about 120-140 µm in diameter), and conidia were elliptical, colorless, single celled and smooth (8-12×4-7 µm) (Figure 1D). Molecular identification was performed by partially sequencing the internal transcribed spacer gene (ITS), 18S rRNA gene and the actin gene (ACT) by using the primers ITS1/ITS4 (White et al. 1990), EF4/Fungi5 (Khodaparase et al. 2005) and ACT-512F/ACT-783R (Carbone and Kohn. 1999). The sequences of the amplified fragments were deposited in GenBank, the ITS sequence (ON005130, 616 bp) showed 100% identity with Phyllosticta capitalensis strain CGMCC3.14345 (JN791605.1), the 18S rRNA sequence (ON005129, 541 bp) showed 99% identity with P. capitalensis isolate MUCC0029 (AB454185.1) and the ACT sequence (ON049348, 251 bp) showed 100% identity with P. capitalensis strain DZSN202005-2 (MW533248.1). A phylogenetic analysis was conducted in MEGA X using the neighbor-joining method and showed that isolate YZ-HN-001 clustered together with P. capitalensis (Figure 2). Based on the above morphological and molecular characteristics, the isolate was determined to be P. capitalensis. Pathogenicity tests were conducted in three replicates by inoculating surface-sterilized leaves of A. oxyphylla. The leaves were wounded and inoculated with colonized PDA plugs (5×5 mm) from 15-day-old cultures. Control leaves wounded in the same way and were inoculated with sterile PDA plugs (5×5 mm). Leaves were moisturized by spraying with sterile water every three days. After 20 days at room temperature (23 to 28℃), similar symptoms were observed in the inoculated leaves as in the field (Figure 1E), but no symptoms were observed on the control leaves (Figure 1F). The same P. capitalensis was reisolated in the inoculated leaves, confirming Koch's postulates. Phyllosticta capitalensis has been reported to cause leaf spots or black spots on various host plants around the world (Wikee et al. 2013), including on oil palm (Nasehi et al. 2020), tea plant (Cheng et al. 2019 ), and castor (Tang et al. 2020). Nevertheless, to our knowledge, this is the first report of leaf spot caused by P. capitalensis on A. oxyphylla worldwide.

20.
Environ Res ; 214(Pt 4): 114211, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36037919

RESUMO

Black soldier fly larvae (larvae) can digest organic wastes and degrade contaminants such as oxytetracycline (OTC). However, compared to the kinetic processes and enhanced mechanisms used in the traditional microbial degradation of OTC, those employed by larvae are largely uncharacterized. To obtain further details, a combined analysis of larval development, larval nutritional values (crude protein, crude fat and the composition of fatty acids) and the expression of tetracycline resistance genes (TRGs) in the larval gut was performed for the degradation of OTC added to substrates and for oxytetracycline bacterial residue (OBR). When the larvae were exposed to the substrates, the degradation processes were enhanced significantly (P < 0.01), with a 4.74-7.86-fold decrease in the degradation half-life (day-1) and a 3.34-5.74-fold increase in the final degradation efficiencies. This result was attributed to the abundant TRGs (with a detection rate of 35.90%∼52.14%) in the larval gut. The TRGs presented the resistance mechanisms of cellular protection and efflux pumps, which ensured that the larvae could tolerate elevated OTC concentrations. Investigation of the TRGs indicated that enzymatic inactivation enhanced OTC degradation by larvae. These findings demonstrate that the larval degradation of antibiotic contaminants is an efficient method based on abundant TRGs in the larval gut, even though OTC degradation results in OBR. In addition, a more optimized system for higher reductions in antibiotic levels and the expansion of larval bioremediation to other fields is necessary.


Assuntos
Dípteros , Oxitetraciclina , Animais , Antibacterianos/farmacologia , Bactérias/genética , Larva , Tetraciclina/farmacologia , Resistência a Tetraciclina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA