Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Urol Oncol ; 38(5): 465-475, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32199754

RESUMO

BACKGROUND: Urothelial carcinomas (UCs) are highly prevalent in patients with end-stage renal disease. Chronic kidney disease (CKD) is the predecessor of end-stage renal disease, and it is also associated with UC. However, the interplay between CKD and UC lacks solid evidence. Acrolein is produced by polyamines and has been suggested to be the uremic "toxin." The level of acrolein correlates well with chronic renal failure. We recently found that acrolein-induced DNA damage and inhibited DNA repair in urothelial cells, which contribute to bladder cancer. Therefore, we hypothesize that acrolein is involved in the formation of UC in patients with CKD. MATERIALS AND METHODS: A total of 62 UC patients and 43 healthy control subjects were recruited. Acrolein-DNA (Acr-dG) adducts and p53 gene mutations in UC tissues, plasma acrolein-protein conjugates (Acr-PC) and S-(3-hydroxypropyl)-N-acetylcysteine levels, and urinary Acr metabolites were analyzed in these patients. RESULTS: Acr-dG levels were statistically correlated with CKD stages in UC patients (P < 0.01). Most p53 mutations were G to A and G to T mutations in these patients, and 50% of mutations at G:C pairs occurred in CpG sites, which is similar to the mutational spectra induced by Acr-dG adducts. Acr-PC levels in the plasma of UC patients with CKD were significantly higher than those of control subjects (P < 0.001). Altered urinary S-(3-hydroxypropyl)-N-acetylcysteine was also found in UC patients with CKD compared to control subjects (P < 0.005). CONCLUSION: These results indicate that acrolein acts as an endogenous uremic toxin and contributes to UC formation in patients with CKD.


Assuntos
Acroleína/efeitos adversos , Carcinoma de Células de Transição/genética , Dano ao DNA , Genes p53/efeitos dos fármacos , Genes p53/genética , Mutação , Insuficiência Renal Crônica/complicações , Neoplasias Urológicas/genética , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Células Tumorais Cultivadas
2.
Exp Neurol ; 323: 113066, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31629858

RESUMO

BACKGROUND AND PURPOSE: Ischemic stroke is the most common type of cerebrovascular event and is responsible for approximately 85% of all strokes in Taiwan. Neurons contain high concentrations of polyamines, which are prone to various pathological states in the brain and are perturbed after cerebral ischemia. Acrolein, an α,ß-unsaturated aldehyde, has been suggested as the primary culprit of neuronal damage in stroke patients. However, the mechanism by which acrolein induces neuronal damage during ischemic stroke is not clear. METHODS: Urinary 3-hydroxypropyl mercapturic acid (3-HPMA), an acrolein-glutathione (GSH) metabolite, plasma acrolein-protein conjugates (Acr-PC) and plasma GSH levels were analyzed to correlate disease severity and prognosis of stroke patients compared with control subjects. In vivo middle cerebral artery occlusion (MCAO) animal models and an in vitro oxygen glucose deprivation (OGD) stroke model were used to investigate the mechanisms of acrolein-induced neuronal damage. RESULTS: A deregulated acrolein metabolism, including significantly increased plasma Acr-PC levels, decreased urinary 3-HPMA levels and decreased plasma GSH levels, was found in stroke patients compared to control subjects. We further observed that acrolein was produced during ischemia resulting in brain damage in in vivo MCAO animal model. The induction of acrolein in neuronal cells during OGD occurred due to the increased expression of spermidine/spermine N1-acetyltransferase (SSAT) by NF-kB pathway activation. In addition, acrolein elicited a vicious cycling of oxidative stress resulting in neurotoxicity. Finally, N-acetylcysteine effectively prevented OGD-induced neurotoxicity by scavenging acrolein. CONCLUSION: Overall, our current results demonstrate that acrolein is a culprit of neuronal damage through GSH depletion in stroke patients. The mechanism underlying the role of acrolein in stroke-related neuronal damage occurs through SSAT-induced polyamine oxidation by NF-kB pathway activation. These results provide a novel mechanism of neurotoxicity in stroke patients, aid in the development of neutralizing or preventive measures, and further our understanding of neural protection.


Assuntos
Acetiltransferases/metabolismo , Acroleína/metabolismo , Transdução de Sinais/fisiologia , Espermidina/metabolismo , Acidente Vascular Cerebral/metabolismo , Idoso , Animais , Encéfalo/metabolismo , Ativação Enzimática/fisiologia , Feminino , Glutationa/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Ratos
3.
Environ Pollut ; 251: 13-21, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31071628

RESUMO

Cigarette smoking (CS) and betel quid (BQ) chewing are two known risk factors that have synergistic potential for the enhancing the development of oral squamous cell carcinoma (OSCC) in Taiwan. Most mutagens and carcinogens are metabolically activated by cytochrome P450 (CYP450) to exert their mutagenicity or carcinogenicity. Previous studies have shown that metabolic activation of the tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), by CYP2A6 activity determines NNK-induced carcinogenesis. In addition, safrole affects cytochrome P450 activity in rodents. However, the effect of BQ safrole on the metabolism of tobacco-specific NNK and its carcinogenicity remains elusive. This study demonstrates that safrole (1 mg/kg/d) induced CYP2A6 activity, reduced urinary 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) levels, and increased NNK-induced DNA damage, including N7-methylguanine, 8-OH-deoxyguanosine and DNA strand breaks in a Syrian golden hamster model. Furthermore, altered NNK metabolism and increased NNK-induced DNA damage were also observed in healthy subjects with CS and BQ chewing histories compared to healthy subjects with CS histories. In conclusion, BQ containing safrole induced tobacco-specific NNK metabolic activation, resulting in higher NNK-induced genotoxicity. This study provides valuable insight into the synergistic mechanisms of CS- and BQ-induced OSCC.


Assuntos
Nicotiana/metabolismo , Nitrosaminas/urina , Safrol/toxicidade , Uso de Tabaco/urina , Ativação Metabólica/efeitos dos fármacos , Animais , Carcinoma de Células Escamosas/induzido quimicamente , Carcinoma de Células Escamosas/metabolismo , Cricetinae , Citocromo P-450 CYP2A6/metabolismo , Feminino , Humanos , Fígado/efeitos dos fármacos , Fígado/enzimologia , Neoplasias Bucais/induzido quimicamente , Neoplasias Bucais/metabolismo , Taiwan , Nicotiana/toxicidade
4.
Food Sci Nutr ; 7(5): 1668-1676, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31139379

RESUMO

SCOPE: Acrolein is a highly electrophilic α,ß-unsaturated aldehyde and is associated with human diseases. It is formed by Maillard reaction during food processing and could be detected in the emissions of overheated cooking oils. Consequently, humans are at risk of acrolein exposure through consumption of such prepared food. METHODS AND RESULTS: We conducted three human studies that healthy subjects (21-30 years) were served fried foods including fried chicken and French fries from three commercial fast food restaurants. Acrolein-related metabolites including urinary 3-hydroxypropyl mercapturic acid (3-HPMA), serum acrolein-protein conjugates (Acr-FDP), and buccal acrolein-induced DNA damages (Acr-dG adducts) along with GSH levels in serum or buccal cells were investigated for different times after consumption. CONCLUSION: Urinary 3-HPMA levels were increased after 2-hr consumption of fried food with an elimination half-life of 10 hr. In addition, increased Acr-dG adducts in oral cavity were inversely correlated to buccal glutathione (GSH) levels after consumption. However, there was no significant change in systemic GSH levels or Acr-FDP adducts in serum. These results indicate that exposure of acrolein from consuming fried food affects local oral cavity homeostasis. This may provide a possible link between intake of fried food and increased risk of upper aerodigestive tract cancers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA