Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 328: 118005, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38508433

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Reyanning (RYN) mixture is a traditional Chinese medicine composed of Taraxacum, Polygonum cuspidatum, Scutellariae Barbatae and Patrinia villosa and is used for the treatment of acute respiratory system diseases with significant clinical efficacy. AIM OF THE STUDY: Acute lung injury (ALI) is a common clinical disease characterized by acute respiratory failure. This study was conducted to evaluate the therapeutic effects of RYN on ALI and to explore its mechanism of action. MATERIALS AND METHODS: Ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to analyze the chemical components of RYN. 7.5 mg/kg LPS was administered to induce ALI in rats. RYN was administered by gavage at doses of 2 ml/kg, 4 ml/kg or 8 ml/kg every 8 h for a total of 6 doses. Observations included lung histomorphology, lung wet/dry (W/D) weight ratio, lung permeability index (LPI), HE staining, Wright-Giemsa staining. ELISA was performed to detect the levels of TNF-α, IL-6, IL-10, Arg-1,UDPG. Immunohistochemical staining detected IL-6, F4/80 expression. ROS, MDA, SOD, GSH/GSSG were detected in liver tissues. Multiple omics techniques were used to predict the potential mechanism of action of RYN, which was verified by in vivo closure experiments. Immunofluorescence staining detected the co-expression of CD86 and CD206, CD86 and P2Y14, CD86 and UGP2 in liver tissues. qRT-PCR detected the mRNA levels of UGP2, P2Y14 and STAT1, and immunoblotting detected the protein expression of UGP2, P2Y14, STAT1, p-STAT1. RESULTS: RYN was detected to contain 1366 metabolites, some of the metabolites with high levels have anti-inflammatory, antibacterial, antiviral and antioxidant properties. RYN (2, 4, and 8 ml/kg) exerted dose-dependent therapeutic effects on the ALI rats, by reducing inflammatory cell infiltration and oxidative stress damage, inhibiting CD86 expression, decreasing TNF-α and IL-6 levels, and increasing IL-10 and Arg-1 levels. Transcriptomics and proteomics showed that glucose metabolism provided the pathway for the anti-ALI properties of RYN and that RYN inhibited lung glycogen production and distribution. Immunofluorescence co-staining showed that RYN inhibited CD86 and UGP2 expressions. In vivo blocking experiments revealed that blocking glycogen synthesis reduced UDPG content, inhibited P2Y14 and CD86 expressions, decreased P2Y14 and STAT1 mRNA and protein expressions, reduced STAT1 protein phosphorylation expression, and had the same therapeutic effect as RYN. CONCLUSION: RYN inhibits M1 macrophage polarization to alleviate ALI. Blocking glycogen synthesis and inhibiting the UDPG/P2Y14/STAT1 signaling pathway may be its molecular mechanism.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Ratos , Animais , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Interleucina-10/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Cromatografia Líquida , Interleucina-6/metabolismo , Uridina Difosfato Glucose/metabolismo , Uridina Difosfato Glucose/farmacologia , Uridina Difosfato Glucose/uso terapêutico , Espectrometria de Massas em Tandem , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Pulmão , Macrófagos/metabolismo , RNA Mensageiro/metabolismo
2.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 47(7): 942-951, 2022 Jul 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-36039592

RESUMO

Cytotoxin-associated gene A (CagA) and vacuolating cytotoxin A (VacA) are the keys to the pathogenic role of Helicobacter pylori and the high-risk factors for the progression of gastric precancerous lesions. Autophagy can stabilize the intracellular environment, resist Helicobacter pylori infection, prevent the accumulation of damaged DNA, and inhibit the proliferation of gastric precancerous variant cells. However, CagA and VacA can inhibit the activation of upstream signals of autophagy and the maturation of autophagy-lysosomes in various ways, thus inhibiting the autophagy of gastric mucosal cells in precancerous lesions of gastric cancer. This change can cause Helicobacter pylori to be unable to be effectively cleared by autophagy, so CagA and VacA can persist and promote the inflammation, oxidative stress, apoptosis of gastric mucosal tissue cells, and the glycolytic activity and proliferation of variant cells in gastric precancerous lesions and a series of malignant biological processes. In recent years, the research on drugs specifically inhibiting the activities of CagA and VacA has become a new direction for the prevention and treatment of Helicobacter pylori-related severe gastric diseases, and a variety of drugs or components that can precisely and effectively regulate the factors for the treatment of gastric precancerous lesions are emerged, which opens a new strategy for the treatment of gastric precancerous lesions in the future.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Lesões Pré-Cancerosas , Antígenos de Bactérias/genética , Autofagia , Proteínas de Bactérias/genética , Citotoxinas , Células Epiteliais/patologia , Helicobacter pylori/genética , Humanos , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia
3.
Front Pharmacol ; 13: 859167, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35387334

RESUMO

An increasing body of evidence shows that macrophages play an important role in the pathogenesis of ulcerative colitis (UC). Macrophage polarization and changes in related signaling pathways are reported to have a protective effect on intestinal inflammation. The well-known Chinese medicine Wumeiwan (WMW) has been used to treat diarrhea, one of the main symptoms of colitis, for more than 2,000 years. Increasing evidence shows that WMW can inhibit intestinal inflammation and repair damaged intestinal mucosa, but its effector mechanisms are unknown. Therefore, we studied the prophylactic effects of WMW in dextran sulfate sodium (DSS)-induced UC and its effects on macrophage mechanisms and polarization. The results show that colitis was significantly alleviated in mice in the WMW group, and the secretion and expression of pro-inflammatory factors TNF-α, IL-1, and IL-6 were inhibited in the serum and colonic tissues of mice with WMW-treated colitis, whereas anti-inflammatory factors IL-10, Arg-1, and TGF-ß1 were increased. Subsequent studies found that WMW could inhibit M1 polarization and promote M2 polarization in colonic macrophages in DSS-induced colitis mice. Network pharmacology was used to predict potential targets and pathways, and further studies confirmed the related targets The results showed that WMW gradually inhibits the activation of the P38MAPK and NF-κB signaling pathways and further activates the STAT6 signaling pathway. In summary, WMW interferes with the p38MAPK, NF-κB and STAT6 signaling pathways to regulate M1/M2 polarization in macrophages, thereby protecting mice against DSS-induced colitis.

4.
Zhongguo Zhong Yao Za Zhi ; 47(1): 151-158, 2022 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-35178922

RESUMO

Lung and intestine combination therapy(LICT) is effective in the treatment of acute lung injury(ALI). In this study, the combination of Mahuang Decoction and Dachengqi Decoction(hereinafter referred to as the combination), a manifestation of LICT, was employed to explore the effect of nuclear factor kappaB(NF-κB)/nucleotide binding oligomerization domain-like receptors-3(NLRP3) pathway and alveolar macrophage activation on the lung inflammation in rats with ALI, for the purpose of elucidating the mechanism of LICT in treating ALI. After the modeling of ALI with limpolysaccharide(LPS, ip), rats were respectively given(ig) the combination at 10, 7.5, and 5 g·kg~(-1)(high-dose, medium-dose, and low-dose LICT groups, separately), once every 8 h for 3 times. Haematoxylin-eosin(HE) staining was used to observe the histopathological changes of lung tissue, followed by the scoring of inflammation. Immunohistochemistry was applied to detect alveolar macrophage activation, enzyme-linked immunosorbent assay(ELISA) was applied to detect the serum content of tumor necrosis factor-α(TNF-α) and interleukin-18(IL-18), Western blot was applied to detect the protein expression of phosphorylated-nuclear factor kappaB p65(p-NF-κB p65), nuclear factor kappaB p65(NF-κB p65), phosphorylated-inhibitor kappaB alpha(p-IκBα), inhibitor kappaB alpha(IκBα), and NLRP3 in lung tissue, and quantitative reverse transcription-PCR(qRT-PCR) was applied to detect the mRNA expression of TNF-α, IL-18, NLRP3, and NF-κB p65 in lung tissue. The results showed that LICT groups demonstrated lung injury relief, decrease in inflammation score, alleviation of alveolar macrophage activation, significant decline in serum content of inflammatory factors TNF-α and IL-18, and decrease of the protein expression of p-NF-κB p65/NF-κB p65, p-IκBα/IκBα, and NLRP3, and mRNA expression of TNF-α, IL-18, NLRP3, and NF-κB p65 in lung tissue. In summary, LICT has definite therapeutic effect on ALI. The mechanism is that it inhibits alveolar macrophage activation by suppressing NF-κB/NLRP3 signaling pathway, thereby reducing the activation and release of inflammatory factors and finally inhibiting inflammation.


Assuntos
Lesão Pulmonar Aguda , NF-kappa B , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/genética , Animais , Medicamentos de Ervas Chinesas , Intestinos , Lipopolissacarídeos , Pulmão/metabolismo , Ativação de Macrófagos , NF-kappa B/genética , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos , Transdução de Sinais
5.
Chin Med ; 17(1): 19, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35123524

RESUMO

BACKGROUND: Acute lung injury (ALI) is an acute multifactorial infectious disease induced by trauma, pneumonia, shock, and sepsis. This study aimed to investigate the protective effects of pseudoephedrine and emodin combined treatment in experimental ALI, as well as the mechanisms underlying the regulation of inflammation and pulmonary edema via the VIP/cAMP/PKA pathway. METHODS: The wistar rats were randomly divided into fifteen groups (n = 5). Rats in each group were given intragastric administration 1 h before LPS injection. Those in the control and LPS groups were given intragastric administrations of physiological saline, rats in other groups were given intragastrically administered of differential dose therapeutic agents. The rats in the LPS and treatment groups were then injected intraperitoneally with LPS (7.5 mg/kg) to induce ALI. After being treated with pseudoephedrine and emodin for 12 h, all animals were sacrifice. Anal temperatures were taken on an hourly basis for 8 h after LPS injection. Pathological examination of lung specimen was performed by H&E staining. Cytokines (IL-1ß, TNF-α, IL-6, iNOS, IL-10, Arg-1, CD86, CD206, F4/80, VIP) in lung tissue were assayed by ELISA and immunofluorescence. The expression of VIP, CAMP, AQP-1, AQP-5, p-PKA, PKA, p-IκBα, IκBα, p-p65, p65, p-P38, P38, p-ERK1/2, ERK1/2, p-JNK1/2, JNK1/2 protein in lung was determined by western blotting. RESULTS: After rats being treated with pseudoephedrine + emodin, reduced of fever symptoms. The contents of inflammatory cytokines (IL-1ß, TNF-α, IL-6, iNOS) were decreased and anti-inflammatory cytokines (IL-10, Arg-1) were significantly increased in serum. Pseudoephedrine + emodin treatment effectively promoted VIP cAMP and p-PKA protein expression in lung tissues, and significantly inhibited NF-κB, MAPK phosphorylation, Pseudoephedrine + emodin treatment can inhibit M1 polarization and promoted M2 polarization via the VIP/cAMP/PKA signaling pathway. CONCLUSIONS: The combination of Pseudoephedrine and emodin was effective in ameliorating LPS-induced ALI in rats by inducing VIP/cAMP/PKA signaling. Inhibiting the NF-κB, MAPK inflammatory pathway, relief of pulmonary edema suppressing macrophage M1 polarization, and promoting macrophage M2 polarization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA