Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.193
Filtrar
1.
J Med Chem ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728549

RESUMO

Triple-negative breast cancer is a highly aggressive and heterogeneous breast cancer subtype characterized by early metastasis, poor prognosis, and high recurrence. Targeting histone citrullination-mediated chromatin dysregulation to induce epigenetic alterations shows great promise in TNBC therapy. We report the synthesis, optimization, and evaluation of a novel series of ß-carboline-derived peptidyl arginine deiminase 4 inhibitors that exhibited potent inhibition of TNBC cell proliferation. The most outstanding PAD4 inhibitor, compound 28, hindered the PAD4-H3cit-NET signaling pathway and inhibited the growth of solid tumors and pulmonary metastatic nodules in the 4T1 in situ mouse model. Furthermore, 28 improved the tumor immune microenvironment by reshaping neutrophil phenotype, upregulating the proportions of dendritic cells and M1 macrophages, and reducing the amount of myeloid-derived suppressor cells. In conclusion, our work offered 28 as an efficacious PAD4 inhibitor that exerts a combination of conventional chemotherapy and immune-boosting effects, which represents a potential therapy strategy for TNBC.

2.
Eur J Med Chem ; 272: 116471, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38704945

RESUMO

Honokiol (HNK) is a typical natural biphenyl polyphenol compound. It has been proven to have a wide range of biological activities, including pharmacological effects such as anti-cancer, anti-inflammatory, neuroprotective, and antimicrobial. However, due to the poor stability, water solubility, and bioavailability of HNK, HNK has not been used in clinical treatment. This article reviews the latest research on the pharmacological activity of HNK and summarizes the HNK derivatives designed and improved by several researchers. Reviewing these contents could promote the research process of HNK and guide the design of better HNK derivatives for clinical application in the future.

3.
Sci China Life Sci ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38748354

RESUMO

Dynamic crosstalk between the embryo and mother is crucial during implantation. Here, we comprehensively profile the single-cell transcriptome of pig peri-implantation embryos and corresponding maternal endometrium, identifying 4 different lineages in embryos and 13 cell types in the endometrium. Cell-specific gene expression characterizes 4 distinct trophectoderm subpopulations, showing development from undifferentiated trophectoderm to polar and mural trophectoderm. Dynamic expression of genes in different types of endometrial cells illustrates their molecular response to embryos during implantation. Then, we developed a novel tool, ExtraCellTalk, generating an overall dynamic map of maternal-foetal crosstalk using uterine luminal proteins as bridges. Through cross-species comparisons, we identified a conserved RBP4/STRA6 pathway in which embryonic-derived RBP4 could target the STRA6 receptor on stromal cells to regulate the interaction with other endometrial cells. These results provide insight into the maternal-foetal crosstalk during embryo implantation and represent a valuable resource for further studies to improve embryo implantation.

4.
Contemp Clin Trials Commun ; 39: 101299, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38720913

RESUMO

Introduction: Many breast cancer patients suffer from fear of cancer recurrence (FCR). However, effective physical intervention for FCR has been scarce. Previous studies have confirmed that repetitive transcranial magnetic stimulation (rTMS) can help improve patients' anxiety, depression, fear, and stress level. Therefore, this study aims to assess the efficacy of rTMS in the treatment of FCR in breast cancer patients and explore its underlying neural mechanism. Methods and analysis: and analysis: Fifty breast cancer patients with high FCR (FCR total score >27), and fifty age- and gender-matched patients with low FCR (FCR total score <7) will be recruited to participate in this study. Patients in the high FCR group will be randomly assigned to receive 4-week low-frequency rTMS targeting the right dorsolateral prefrontal cortex (rDLPFC) + treatment as usual (TAU) (n = 25), or to receive sham stimulation + TAU (n = 25). Patients in the low FCR group will only receive TAU. All participants will take a baseline fMRI scan to examine the local activities and interactions of brain activity between the prefrontal cortex (DLPFC), amygdala and hippocampus. Fear of Cancer Recurrence Questionnaire (FCRQ7), Patient Health Questionnaire (PHQ9), Generalize Anxiety Disorder (GAD7), Numeric Rating Scale (NRS), and Insomnia Severity Index (ISI7) will be used to measure an individual's FCR, depression, anxiety, pain, and insomnia symptoms at week 0 (baseline), week 4 (the end of intervention), week 5 (1 week post-treatment), week 8 (1 month post-treatment), and week 16 (3 months post-treatment). Participants in the high FCR group will receive a post-treatment fMRI scan within 24 h after intervention to explore the neural mechanisms of rTMS treatment. The primary outcome of the study, whether the rTMS intervention is sufficient in relieving FCR in breast cancer patients, is measured by FCRQ7. Additionally, task activation, local activity and functional connectivity of the DLPFC, amygdala and hippocampus will be compared, between high and low FCR group, and before and after treatment. Discussion: Studies have shown that low-frequency rTMS can be used to treat patient's FCR. However, there is a lack of relevant evidence to support the efficacy of rTMS on FCR in cancer patients, and the neural mechanisms underlying the effects of rTMS on FCR need to be further investigated. Ethics and dissemination: Ethical approval for the study has been obtained from the Ethics Committee of Guangdong Provincial People's Hospital (reference number: KY-N-2022-136-01). The results of the investigation will be published in scientific papers. The data from the investigation will be made available online if necessary. Trial registration: NCT05881889 (ClinicalTrials.gov). Date of registration: May 31, 2023.

5.
Transl Androl Urol ; 13(4): 537-547, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38721285

RESUMO

Background: Inflammation, fibrosis and autophagy represent closely related factors associated with the pathogenesis of diabetes mellitus erectile dysfunction (DMED). In this study, the therapeutic effect of nitro-oleic acid (NO2-OA) in a streptozotocin-induced rat model of DMED was evaluated. Methods: Sixty rats were randomly divided into four groups: control, DMED, DMED + Vehicle and DMED + NO2-OA. DMED was induced by intraperitoneal injection of streptozotocin in male rats. Blood glucose and body weight were measured every 2 weeks. After 4 weeks of NO2-OA treatment, erectile function was measured by electrical stimulation of cavernous nerve (CN). Western blotting, quantitative real-time polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay (ELISA), immunofluorescence and Masson's trichrome staining were used to verify the related factors and protein expression levels. Results: We found that NO2-OA could significantly increase erectile pressure in the corpus cavernosum of DMED rats. Results of western blot, confocal immunofluorescence and qRT-PCR assays revealed that NO2-OA significantly reduced inflammatory factors and the expression of nuclear factor kappa B (NF-κB). In addition, Masson staining results indicated that NO2-OA significantly reduced the display of fibrotic tissue in the corpus cavernosum. These beneficial effects may be related to reductions in the expression of transforming growth factor-ß1 (TGF-ß1) and connective tissue growth factor (CTGF) and the increase in the expression of α-smooth muscle actin (α-SMA). Finally, NO2-OA treatment increased the expression of the autophagy marker, LC3, while P62 was decreased, effects suggesting that one of the underlying mechanisms of NO2-OA may involve an activation of the PI3K/AKT/mTOR pathway to enhance the capacity for autophagy within this tissue. Conclusions: NO2-OA enhances erectile function within a rat model of DMED by inhibiting inflammation and fibrosis along with activating autophagy.

6.
Phytochemistry ; 223: 114120, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38705265

RESUMO

Eleven previously undescribed sesquiterpenoids (8-18), one undescribed jasmonic acid derivative (35) and 28 known compounds were isolated from the leaves of Artemisia stolonifera. Undescribed compounds with their absolute configurations were determined by extensive spectroscopic analysis, single-crystal X-ray diffraction and ECD calculation. Compound 8 was identified as a rare sesquiterpenoid featuring a rearranged 5/8 bicyclic ring system, whereas compound 17 was found to be an unprecedented monocyclic sesquiterpenoid with methyl rearrangement. Evaluation of biological activity showed that compounds 1-5 and 7 displayed cytotoxicity against six tumor cells. In the meantime, compounds 11, 12, 18 and 35 exhibited inhibitory effects against LPS-stimulated NO production in RAW 264.7 macrophage cells and reduced the transcription of IL-6 and IL-1ß in a dose-dependent manner at 25, 50 and 100 µM. Moreover, the anti-inflammatory-based network pharmacology and molecular docking analyses revealed potential target proteins of 11, 12, 18 and 35.

7.
Eur J Neurol ; : e16326, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709145

RESUMO

BACKGROUND AND PURPOSE: The causal association between inflammatory cytokines and the development of intracranial aneurysm (IA), unruptured IA (uIA) and subarachnoid hemorrhage (SAH) lacks clarity. METHODS: The summary-level datasets for inflammatory cytokines were extracted from a genome-wide association study of the Finnish Cardiovascular Risk in Young Adults Study and the FINRISK survey. The summary statistics datasets related to IA, uIA and SAH were obtained from the genome-wide association study meta-analysis of the International Stroke Genetics Consortium and FinnGen Consortium. The primary method employed for analysis was inverse variance weighting (false discovery rate), supplemented by sensitivity analyses to address pleiotropy and enhance robustness. RESULTS: In the International Stroke Genetics Consortium, 10, six and eight inflammatory cytokines exhibited a causal association with IA, uIA and SAH, respectively (false discovery rate, p < 0.05). In FinnGen datasets, macrophage Inflammatory Protein-1 Alpha (MIP_1A), MIP_1A and interferon γ-induced protein 10 (IP_10) were verified for IA, uIA and SAH, respectively. In the reverse Mendelian randomization analysis, the common cytokines altered by uIA and SAH were vascular endothelial growth factor (VEGF), MIP_1A, IL_9, IL_10 and IL_17, respectively. The meta-analysis results show that MIP_1A and IP_10 could be associated with the decreased risk of IA, and MIP_1A and IP_10 were associated with the decreased risk of uIA and SAH, respectively. Notably, the levels of VEGF, MIP_1A, IL_9, IL_10 and TNF_A were increased with uIA. Comprehensive heterogeneity and pleiotropy analyses confirmed the robustness of these results. CONCLUSION: Our study unveils a bidirectional association between inflammatory cytokines and IA, uIA and SAH. Further investigations are essential to validate their relationship and elucidate the underlying mechanisms.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38739859

RESUMO

Water-stable organic radicals are promising photothermal conversion candidates for photothermal therapy (PTT). However, organic radicals are usually unstable in biological environments, which greatly hinders their wide application. Here, we have developed a chaotropic effect-based and photoinduced water-stable supramolecular radical (MB12-2) for efficient antibacterial PTT. The supramolecular radical precursor MB12-1 was constructed by the chaotropic effect between closo-dodecaborate cluster (B12H122-) and N,N'-dimethylated dipyridinium thiazolo [5,4-d] thiazole (MPT2+). Subsequently, with triethanolamine (TEOA) serving as an electron donor, MB12-1 could transform to its radical form MB12-2 through photoinduced electron transfer (PET) under 435-nm laser irradiation. The N2 adsorption-desorption analysis confirmed that MB12-2 was tightly packed through the introduction of B12H122-, which effectively enhanced its stability via a spatial site-blocked effect. Moreover, the half-life of MB12-2 in water was calculated through ultraviolet-visible light (UV-vis) absorption spectra results for periods as long as 20 days. In addition, in the skin infection model, MB12-2, as a wound dressing, showed remarkable photothermal antibacterial activity (>97%) under 660-nm laser irradiation and promoted wound healing. This study presents a simple method for designing long-term water-stable supramolecular radicals, offering a novel avenue for noncontact treatments for bacterial infections.

9.
ACS Chem Biol ; 19(4): 788-797, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38581649

RESUMO

Neuromodulators play crucial roles in regulating neuronal activity and affecting various aspects of brain functions, including learning, memory, cognitive functions, emotional states, and pain modulation. In this Account, we describe our group's efforts in designing sensors and tools for studying neuromodulation. Our lab focuses on developing new classes of integrators that can detect neuromodulators across the whole brain while leaving a mark for further imaging analysis at high spatial resolution. Our lab also designed chemical- and light-dependent protein switches for controlling peptide activity to potentially modulate the endogenous receptors of the neuromodulatory system in order to study the causal effects of selective neuronal pathways.


Assuntos
Encéfalo , Neurônios , Neurônios/metabolismo , Encéfalo/metabolismo , Neurotransmissores/metabolismo
10.
Proc Natl Acad Sci U S A ; 121(18): e2307090121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38648487

RESUMO

G protein-coupled receptors (GPCRs) transduce the effects of many neuromodulators including dopamine, serotonin, epinephrine, acetylcholine, and opioids. The localization of synthetic or endogenous GPCR agonists impacts their action on specific neuronal pathways. In this paper, we show a series of single-protein chain integrator sensors that are highly modular and could potentially be used to determine GPCR agonist localization across the brain. We previously engineered integrator sensors for the mu- and kappa-opioid receptor agonists called M- and K-Single-chain Protein-based Opioid Transmission Indicator Tool (SPOTIT), respectively. Here, we engineered red versions of the SPOTIT sensors for multiplexed imaging of GPCR agonists. We also modified SPOTIT to create an integrator sensor design platform called SPOTIT for all GPCRs (SPOTall). We used the SPOTall platform to engineer sensors for the beta 2-adrenergic receptor (B2AR), the dopamine receptor D1, and the cholinergic receptor muscarinic 2 agonists. Finally, we demonstrated the application of M-SPOTIT and B2AR-SPOTall in detecting exogenously administered morphine, isoproterenol, and epinephrine in the mouse brain via locally injected viruses. The SPOTIT and SPOTall sensor design platform has the potential for unbiased agonist detection of many synthetic and endogenous neuromodulators across the brain.


Assuntos
Receptores Acoplados a Proteínas G , Animais , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Camundongos , Células HEK293 , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Receptores Adrenérgicos beta 2/genética , Receptor Muscarínico M2/agonistas , Receptor Muscarínico M2/metabolismo , Isoproterenol/farmacologia , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , Morfina/farmacologia , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/metabolismo , Técnicas Biossensoriais/métodos
11.
Am J Transplant ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38642712

RESUMO

Immune checkpoint inhibitors (ICIs) as a downstaging or bridging therapy for liver transplantation (LT) in hepatocellular carcinoma patients are rapidly increasing. However, the evidence about the feasibility and safety of pre-LT ICI therapy is limited and controversial. To this end, a multicenter, retrospective cohort study was conducted in 11 Chinese centers. The results showed that 83 recipients received pre-LT ICI therapy during the study period. The median post-LT follow-up was 8.1 (interquartile range 3.3-14.6) months. During the short follow-up, 23 (27.7%) recipients developed allograft rejection, and 7 of them (30.4%) were diagnosed by liver biopsy. Multivariate logistics regression analysis showed that the time interval between the last administration of ICI therapy and LT (TLAT) ≥ 30 days was an independent protective factor for allograft rejection (odds ratio = 0.096, 95% confidence interval 0.026-0.357; P < .001). Multivariate Cox analysis showed that allograft rejection was an independent risk factor for overall survival (hazard ratio = 9.960, 95% confidence interval 1.006-98.610; P = .043). We conclude that patients who receive a pre-LT ICI therapy with a TLAT shorter than 30 days have a much higher risk of allograft rejection than those with a TLAT longer than 30 days. The presence of rejection episodes might be associated with higher post-LT mortality.

12.
J Immunother Cancer ; 12(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38642937

RESUMO

BACKGROUND: Studies showed that vascular endothelial growth factor (VEGF) inhibitors could improve therapeutic efficacy of PD-1/PD-L1 antibodies by transforming the immunosuppressive tumor microenvironment (TME) into an immunoresponsive TME. Ivonescimab is a first-in-class, humanized tetravalent bispecific antibody targeting PD-1 and VEGF-A simultaneously. Here, we report the first-in-human, phase 1a study of ivonescimab in patients with advanced solid tumors. METHODS: Patients with advanced solid tumors were treated with ivonescimab 0.3, 1, 3, 10, 20 or 30 mg/kg intravenously every 2 weeks using a 3+3+3 dose escalation design. Dose expansion occurred at 10 and 20 mg/kg in selected tumor types. The primary objective was to assess the safety and tolerability, and to determine the maximum tolerated dose (MTD). The secondary objectives included pharmacokinetics, pharmacodynamics and preliminary antitumor activity based on Response Evaluation Criteria in Solid Tumors V.1.1. RESULTS: Between October 2, 2019 and January 14, 2021, a total of 51 patients were enrolled and received ivonescimab. Two dose-limiting toxicities were reported at 30 mg/kg. The MTD of ivonescimab was 20 mg/kg every 2 weeks. Grade≥3 treatment-related adverse events (TRAEs) occurred in 14 patients (27.5%). The most common TRAEs of any grade were rash (29.4%), arthralgia (19.6%), hypertension (19.6%), fatigue (17.6%), diarrhea (15.7%) and pruritus (11.8%). The most common grade≥3 TRAEs were hypertension (7/51, 13.7%), alanine aminotransferase increased (3/51, 5.2%), aspartate aminotransferase increased (2/51, 3.9%) and colitis (2/51, 3.9%). Of 47 patients who had at least one postbaseline assessment, the confirmed objective response rate was 25.5% (12/47) and disease control rate was 63.8% (30/47). Among 19 patients with platinum-resistant ovarian cancer, 5 patients (26.3%) achieved partial response (PR). Efficacy signals were also observed in patients with mismatch repair proficient (pMMR) colorectal cancer, non-small cell lung cancer, and both MMR deficient and pMMR endometrial cancer. CONCLUSIONS: Ivonescimab demonstrated manageable safety profiles and promising efficacy signals in multiple solid tumors. Exploration of alternative dosing regimens of ivonescimab monotherapy and combination therapies is warranted. TRIAL REGISTRATION NUMBER: NCT04047290.


Assuntos
Anticorpos Biespecíficos , Carcinoma Pulmonar de Células não Pequenas , Hipertensão , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular , Receptor de Morte Celular Programada 1/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Biespecíficos/efeitos adversos , Inibidores de Checkpoint Imunológico/uso terapêutico , Microambiente Tumoral
13.
Clin Transl Med ; 14(4): e1647, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38566524

RESUMO

BACKGROUND: Moyamoya disease (MMD) stands as a prominent cause of stroke among children and adolescents in East Asian populations. Although a growing body of evidence suggests that dysregulated inflammation and autoimmune responses might contribute to the development of MMD, a comprehensive and detailed understanding of the alterations in circulating immune cells associated with MMD remains elusive. METHODS: In this study, we employed a combination of single-cell RNA sequencing (scRNA-seq), mass cytometry and RNA-sequencing techniques to compare immune cell profiles in peripheral blood samples obtained from patients with MMD and age-matched healthy controls. RESULTS: Our investigation unveiled immune dysfunction in MMD patients, primarily characterized by perturbations in T-cell (TC) subpopulations, including a reduction in effector TCs and an increase in regulatory TCs (Tregs). Additionally, we observed diminished natural killer cells and dendritic cells alongside heightened B cells and monocytes in MMD patients. Notably, within the MMD group, there was an augmented proportion of fragile Tregs, whereas the stable Treg fraction decreased. MMD was also linked to heightened immune activation, as evidenced by elevated expression levels of HLA-DR and p-STAT3. CONCLUSIONS: Our findings offer a comprehensive view of the circulating immune cell landscape in MMD patients. Immune dysregulation in patients with MMD was characterized by alterations in T-cell populations, including a decrease in effector T-cells and an increase in regulatory T-cells (Tregs), suggest a potential role for disrupted circulating immunity in the aetiology of MMD.


Assuntos
Doença de Moyamoya , Criança , Adolescente , Humanos , Doença de Moyamoya/genética , Doença de Moyamoya/metabolismo , Inflamação , Linfócitos T Reguladores/metabolismo
14.
Clin Immunol ; 263: 110227, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38643891

RESUMO

T-DM1 (Trastuzumab Emtansine) belongs to class of Antibody-Drug Conjugates (ADC), where cytotoxic drugs are conjugated with the antibody Trastuzumab to specifically target HER2-positive cancer cells. Platelets, as vital components of the blood system, intricately influence the immune response to tumors through complex mechanisms. In our study, we examined platelet surface proteins in the plasma of patients before and after T-DM1 treatment, categorizing them based on treatment response. We identified a subgroup of platelets with elevated expression of CD63 and CD9 exclusively in patients with favorable treatment responses, while this subgroup was absent in patients with poor responses. Another noteworthy discovery was the elevated expression of CD36 in the platelet subgroups of patients exhibiting inadequate responses to treatment. These findings suggest that the expression of these platelet surface proteins may be correlated with the prognosis of T-DM1 treatment. These indicators offer valuable insights for predicting the therapeutic response to T-DM1 and may become important references in future clinical practice, contributing to a better understanding of the impact of ADC therapies and optimizing personalized cancer treatment strategies.

15.
Nano Lett ; 24(15): 4649-4657, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38572971

RESUMO

Deep-seated bacterial infections (DBIs) are stubborn and deeply penetrate tissues. Eliminating deep-seated bacteria and promoting tissue regeneration remain great challenges. Here, a novel radical-containing hydrogel (SFT-B Gel) cross-linked by a chaotropic effect was designed for the sensing of DBIs and near-infrared photothermal therapy (NIR-II PTT). A silk fibroin solution stained with 4,4',4″-(1,3,5-triazine-2,4,6-triyl)tris(1-methylpyridin-1-ium) (TPT3+) was employed as the backbone, which could be cross-linked by a closo-dodecaborate cluster (B12H122-) through a chaotropic effect to form the SFT-B Gel. More interestingly, the SFT-B Gel exhibited the ability to sense DBIs, which could generate a TPT2+• radical with obvious color changes in the presence of bacteria. The radical-containing SFT-B Gel (SFT-B★ Gel) possessed strong NIR-II absorption and a remarkable photothermal effect, thus demonstrating excellent NIR-II PTT antibacterial activity for the treatment of DBIs. This work provides a new approach for the construction of intelligent hydrogels with unique properties using a chaotropic effect.


Assuntos
Fototerapia , Terapia Fototérmica , Hidrogéis/farmacologia
16.
Talanta ; 275: 126044, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38626500

RESUMO

Advanced analytical techniques are emerging in the food industry. Aptamer-based biosensors achieve rapid and highly selective analysis, thus drawing particular attention. Aptamers are oligonucleotide probes screened via in vitro Systematic Evolution of Ligands by EXponential Enrichment (SELEX), which can bind with their specific targets by folding into three-dimensional configurations and accept various modifications to be incorporated into biosensors, showing great potential in food analysis. Unfortunately, aptamers obtained by SELEX may not possess satisfactory affinity. Post-SELEX strategies were proposed to optimize aptamers' configuration and enhance the binding affinity, with specificity confirmed. Sequence-based optimization strategies exhibit great advantages in simple operation, good generalization, low cost, etc. This review summarizes the latest study (2015-2023) on generating robust aptamers for food targets by sequence-based configuration optimization, as well as the generated aptamers and aptasensors, with an expectation to provide inspirations for developing aptamer and aptasensors with high performance for food analysis and to safeguard food quality and safety.

17.
Artigo em Inglês | MEDLINE | ID: mdl-38558503

RESUMO

The blood-brain barrier presents a key limitation to the administration of therapeutic molecules for the treatment of brain disease. While drugs administered orally or intravenously must cross this barrier to reach brain targets, the unique anatomical structure of the olfactory system provides a route to deliver drugs directly to the brain. Entering the brain via receptor, carrier, and adsorption-mediated transcytosis in the nasal olfactory and trigeminal regions has the potential to increase drug delivery. In this review, we introduce the physiological and anatomical structures of the nasal cavity, and summarize the possible modes of transport and the relevant receptors and carriers in the nose-to-brain pathway. Additionally, we provide examples of nanotherapeutics developed for intranasal drug delivery to the brain. Further development of nanoparticles that can be applied to intranasal delivery systems promises to improve drug efficacy and reduce drug resistance and adverse effects by increasing molecular access to the brain. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.


Assuntos
Encéfalo , Nanopartículas , Encéfalo/metabolismo , Barreira Hematoencefálica/metabolismo , Administração Intranasal , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos , Nanopartículas/química
19.
Animals (Basel) ; 14(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38672309

RESUMO

Ecological factors related to climate extremes have a significant influence on the adaptability of organisms, especially for ectotherms such as reptiles that are sensitive to temperature change. Climate extremes can seriously affect the survival and internal physiology of lizards, sometimes even resulting in the loss of local populations or even complete extinction. Indeed, studies have shown that the expression levels of the nuclear genes and mitochondrial genomes of reptiles change under low-temperature stress. At present, the temperature adaptability of reptiles has rarely been studied at the mitochondrial genome level. In the present study, the mitochondrial genomes of three species of lizards, Calotes versicolor, Ateuchosaurus chinensis, and Hemidactylus bowringii, which live in regions of sympatry, were sequenced. We used RT-qPCR to explore the level of mitochondrial gene expression under low-temperature stress, as compared to a control temperature. Among the 13 protein-coding genes (PCGs), the steady-state transcript levels of ND4L, ND1, ATP6, and COII were reduced to levels of 0.61 ± 0.06, 0.50 ± 0.08, 0.44 ± 0.16, and 0.41 ± 0.09 in C. versicolor, respectively, compared with controls. The transcript levels of the ND3 and ND6 genes fell to levels of just 0.72 ± 0.05 and 0.67 ± 0.05 in H. bowringii, compared with controls. However, the transcript levels of ND3, ND5, ND6, ATP6, ATP8, Cytb, and COIII genes increased to 1.97 ± 0.15, 2.94 ± 0.43, 1.66 ± 0.07, 1.59 ± 0.17, 1.46 ± 0.04, 1.70 ± 0.16, and 1.83 ± 0.07 in A. chinensis. Therefore, the differences in mitochondrial gene expression may be internally related to the adaptative strategy of the three species under low-temperature stress, indicating that low-temperature environments have a greater impact on A. chinensis, with a small distribution area. In extreme environments, the regulatory trend of mitochondrial gene expression in reptiles is associated with their ability to adapt to extreme climates, which means differential mitochondrial genome expression can be used to explore the response of different lizards in the same region to low temperatures. Our experiment aims to provide one new research method to evaluate the potential extinction of reptile species in warm winter climates.

20.
Micromachines (Basel) ; 15(4)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38675293

RESUMO

Piezoelectric micromachined ultrasound transducers (PMUTs) have gained significant popularity in the field of ultrasound ranging and medical imaging owing to their small size, low power consumption, and affordability. The scar-free "MIS" (micro-hole inter-etch and sealing) process, a novel bulk-silicon manufacturing technique, has been successfully developed for the fabrication of pressure sensors, flow sensors, and accelerometers. In this study, we utilize the MIS process to fabricate cavity diaphragm structures for PMUTs, resulting in the formation of a flat cavity diaphragm structure through anisotropic etching of (111) wafers in a 70 °C tetramethylammonium hydroxide (TMAH) solution. This study investigates the corrosion characteristics of the MIS technology on (111) silicon wafers, arranges micro-pores etched on bulk silicon around the desired cavity structure in a regular pattern, and takes into consideration the distance compensation for lateral corrosion, resulting in a fully connected cavity structure closely approximating an ortho-hexagonal shape. By utilizing a sputtering process to deposit metallic molybdenum as upper and lower electrodes, as well as piezoelectric materials above the cavity structure, we have successfully fabricated aluminum nitride (AlN) piezoelectric ultrasonic transducer arrays of various sizes and structures. The final hexagonal PMUT cells of various sizes that were fabricated achieved a maximum quality factor (Q) of 251 and a displacement sensitivity of 18.49 nm/V across a range of resonant frequencies from 6.28 MHz to 11.99 MHz. This fabrication design facilitates the achievement of IC-compatible and cost-effective mass production of PMUT array devices with high resonance frequencies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA