Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Animals (Basel) ; 14(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38731327

RESUMO

DNA polymerase ß (DNA polymerase beta (POLB)) belongs to a member of the DNA polymerase X family, mainly involved in various biological metabolic processes, such as eukaryotic DNA replication, DNA damage repair, gene recombination, and cell cycle regulation. In this study, the muscle development-related gene POLB was screened by selection signature and RNA-seq analysis and then validated for the proliferation and apoptosis of bovine primary myocytes. It was also found that overexpression of the POLB gene had a pro-apoptosis effect, but interfering with the expression of the gene had no significant effect on cells. Then, the analysis of related apoptotic genes revealed that POLB overexpression affected CASP9 gene expression.

2.
Virology ; 595: 110094, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38692133

RESUMO

Stress-induced immunosuppression (SIIS) is one of common problems in the intensive poultry industry, affecting the effect of vaccine immunization and leading to high incidences of diseases. In this study, the expression characteristics and regulatory mechanisms of miR-214 in the processes of SIIS and its influence on the immune response to avian influenza virus (AIV) vaccine in chicken were explored. The qRT-PCR results showed that serum circulating miR-214 was significantly differentially expressed (especially on 2, 5, and 28 days post immunization (dpi)) in the processes, so had the potential as a molecular marker. MiR-214 expressions from multiple tissues were closely associated with the changes in circulating miR-214 expression levels. MiR-214-PTEN regulatory network was a potential key regulatory mechanism for the heart, bursa of Fabricius, and glandular stomach to participate in the process of SIIS affecting AIV immune response. This study can provide references for further understanding of stress affecting immune response.


Assuntos
Galinhas , Vacinas contra Influenza , Influenza Aviária , MicroRNAs , PTEN Fosfo-Hidrolase , Estresse Fisiológico , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Galinhas/virologia , Vacinas contra Influenza/imunologia , Influenza Aviária/virologia , Influenza Aviária/imunologia , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/imunologia , Tolerância Imunológica , Transdução de Sinais , Vírus da Influenza A/imunologia
3.
Huan Jing Ke Xue ; 45(3): 1315-1327, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471848

RESUMO

Analysis of the spatial and temporal distribution characteristics and influencing factors of PM2.5 concentrations for the urban agglomeration on the northern slope of Tianshan Mountain is of positive significance for regional economic construction and environmental protection. The spatial and temporal distributions of PM2.5 concentrations in the Tianshan North Slope urban agglomeration from March to November 2015 to 2021 were obtained through the inversion of the MCD19A2 aerosol product combined with meteorological factors using a geographically weighted regression (GWR) model, followed by the analysis of change trends and influencing factors. The results were as follows:① the high PM2.5 concentrations in the study area were mainly distributed in the oasis city cluster between the northern foot of Tianshan Mountain and the Gurbantunggut Desert, showing the spatial distribution characteristics of being "low around and high in the middle" and "low in the west and high in the east." The annual average value of ρ(PM2.5) in the study area was 16.98 µg·m-3, with high values mainly concentrated in the urban part of Urumqi and decreasing towards Changji and Fukang. The monthly average ρ(PM2.5) distribution pattern was consistent with the annual average, but there were seasonal differences as follows:autumn (20.32 µg·m-3) > spring (18.25 µg·m-3) > summer (12.47 µg·m-3). The accumulation phenomenon was more pronounced in spring and winter. ② The study area's annual average PM2.5 concentration showed a decreasing trend from 2015 to 2021, and the average value from March to October also showed a decreasing trend, with only a slight increase in November. From the analysis of the spatial distribution of PM2.5 concentration trends, the decrease was concentrated in the urban parts of major cities, especially in the urban part of Urumqi and its surrounding areas, where the decrease was the largest and the change was the most drastic. ③ Temperature and air pressure were positively correlated with PM2.5 concentrations, whereas relative humidity, wind speed, atmospheric boundary layer height, and precipitation were negatively correlated with PM2.5 concentrations. The degree of influence of each factor was ranked from high to low as follows:atmospheric boundary layer height > relative humidity > air pressure > air temperature > wind speed > precipitation.

4.
Mol Ther ; 32(4): 910-919, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38351611

RESUMO

The miniature V-F CRISPR-Cas12f system has been repurposed for gene editing and transcription modulation. The small size of Cas12f satisfies the packaging capacity of adeno-associated virus (AAV) for gene therapy. However, the efficiency of Cas12f-mediated transcriptional activation varies among different target sites. Here, we developed a robust miniature Cas-based transcriptional activation or silencing system using Un1Cas12f1. We engineered Un1Cas12f1 and the cognate guide RNA and generated miniCRa, which led to a 1,319-fold increase in the activation of the ASCL1 gene. The activity can be further increased by tethering DNA-binding protein Sso7d to miniCRa and generating SminiCRa, which reached a 5,628-fold activation of the ASCL1 gene and at least hundreds-fold activation at other genes examined. We adopted these mutations of Un1Cas12f1 for transcriptional repression and generated miniCRi or SminiCRi, which led to the repression of ∼80% on average of eight genes. We generated an all-in-one AAV vector AIOminiCRi used to silence the disease-related gene SERPINA1. AIOminiCRi AAVs led to the 70% repression of the SERPINA1 gene in the Huh-7 cells. In summary, miniCRa, SminiCRa, miniCRi, and SminiCRi are robust miniature transcriptional modulators with high specificity that expand the toolbox for biomedical research and therapeutic applications.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Edição de Genes , Ativação Transcricional , Terapia Genética
5.
Int Immunopharmacol ; 130: 111719, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38377854

RESUMO

Stress-induced immunosuppression (SIIS) can weaken the immune response effect of poultry vaccination, and bring huge hidden dangers and economic losses to the poultry industry. However, the detailed molecular mechanisms are still not fully understood. Unveiling the common mechanism of SIIS affecting the immune response to different vaccines is critical for detecting and minimizing the losses caused by SIIS. This study used glucocorticoid dexamethasone (Dex) to simulate SIIS, and three classic avian vaccines (including avian influenza virus (AIV), Newcastle disease virus (NDV), and infectious bursal disease virus (IBDV)) were used to induce immune responses in chicken. Quantitative real-time PCR (qRT-PCR) revealed the expression characteristics and functions of circMYO1B and miR-155 in the processes of SIIS affecting the immune response to the aforementioned avian vaccines, as well as their targeted regulatory relationship. Subsequent bioinformatics analysis predicted FOS, one of the potential target genes of miR-155. The results showed that circMYO1B/miR-155 pathway served as a key common mechanism by which SIIS affected the immune response to the three vaccines. Both heart and proventriculus appeared to be the crucial tissues for this process, with five days post immunization (dpi) emerging as the primary time of interest. Moreover, mitogen-activated protein kinase (MAPK) signaling system played a key role in modulating the immune response subsequent to SIIS administration. Our findings provide new insights into the immune function of competitive endogenous RNA (ceRNA), which have important function in the detection and treatment of SIIS affecting vaccine immunity.


Assuntos
Vacinas contra Influenza , MicroRNAs , Doenças das Aves Domésticas , Vacinas Virais , Animais , Galinhas , Terapia de Imunossupressão , Vírus da Doença de Newcastle , Imunidade , MicroRNAs/genética
6.
Animals (Basel) ; 14(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38254394

RESUMO

Lipid metabolism plays an important role in maintaining lipid homeostasis and regulating immune functions. However, the regulations and mechanisms of lipid metabolism on the regional immune function of avian adipose tissue (AT) have not been reported. In this study, qRT-PCR was used to investigate the changes and relationships of different lipid metabolism pathways in chicken AT during stress-induced immunosuppression (SIIS) inhibiting immune response to Newcastle disease virus vaccine, then the miRNA regulation patterns of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) gene and its potential applications were further identified. The results showed that AT actively responded to SIIS, and ATGL, CPT1A and HMGCR were all the key genes involved in the processes of SIIS inhibiting the immune responses. SIIS significantly inhibited the natural and specific immune phases of the primary immune response and the initiation phase of the secondary immune response in AT by suppressing T cells by up-regulating steroid anabolism. Moreover, steroid metabolism could play dual roles in regulating the regional immune functions of AT. The miR-29a/c-3p-HMGCR network was a potential regulation mechanism of steroid metabolism in AT, and serum circulating miR-29a/c-3p had the potential as molecular markers. The study can provide valuable references for an in-depth investigation of the regional immune functions regulated by lipid metabolism in AT.

7.
Materials (Basel) ; 16(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37629970

RESUMO

Al2O3-bonded SiAlON ceramic with self-coating was prepared using aluminum dross and silicon solid waste as starting materials under ambient air conditions. The changes in phase, microstructure, and physical properties of the ceramic with temperature were analyzed and the formation mechanism of the SiAlON phase was elucidated. The results showed that higher temperature was more suitable for the preparation of SiAlON ceramics. As the temperature increased from 1400 to 1600 °C, the main phases in the ceramic transformed from mullite, Al2O3, and SiAlON to Al2O3 and SiAlON. An Al2O3-rich layer spontaneously coated the surface of the porous ceramic as Al melted and oxidized at high temperature. The thickness of this layer decreased as the temperature increased. The presence of Al2O3-rich coating layer impeded air flow, allowing nitriding of Si and Al, and the formation of the SiAlON phase in ambient air conditions. This study not only presents a strategy to successfully recycle aluminum dross and silicon solid waste but also offers a straightforward approach to preparing SiAlON material in air atmosphere.

8.
Poult Sci ; 102(6): 102646, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37031585

RESUMO

Adipose tissue (AT) is considered as a regional immune organ and plays an important role in the anti-infection immune response. However, the function and mechanism of chicken AT in response to secondary immune response remain poorly understood. Here, we used mRNA and microRNA (miRNA) sequencing technology to survey the transcriptomic landscape of chicken abdominal adipose tissue (AAT) during the first and second immunization with Newcastle disease virus (NDV) vaccine, and carried out bioinformatics analysis, such as Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis, protein-protein interaction (PPI) analysis, and miRNA-mRNA integrated analysis. The results indicated that chicken AAT actively responded to the secondary immune response. DNA replication and cytoskeleton regulation as the regulatory functions of immune activation changed significantly, and weakened lipid metabolism was an effective strategy for the secondary immunity. Mechanically, the regulatory network between the differentially expressed miRNAs (DEMs) and their targeted differentially expressed genes (DEGs), such as miR-206/miR-499-5p-nuclear receptor subfamily 4 group A member 3 (NR4A3)/methylsterol monooxygenase 1 (MSMO1) pathway, was one of the potential key mechanisms by which AAT responded to the secondary immune response. In conclusion, regional immunity of chicken AT responds to secondary immunity by promoting immune activation and weakening lipid metabolism, and this study can instruct future research on antiviral strategy.


Assuntos
MicroRNAs , Doença de Newcastle , Vacinas , Animais , Galinhas/genética , Doença de Newcastle/prevenção & controle , Metabolismo dos Lipídeos , MicroRNAs/genética , MicroRNAs/metabolismo , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/veterinária , RNA Mensageiro/genética
9.
Front Plant Sci ; 14: 1101766, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077639

RESUMO

Oiltea-camellia (C. oleifera) is a widely cultivated woody oil crop in Southern China and Southeast Asia. The genome of oiltea-camellia was very complex and not well explored. Recently, genomes of three oiltea-camellia species were sequenced and assembled, multi-omic studies of oiltea-camellia were carried out and provided a better understanding of this important woody oil crop. In this review, we summarized the recent assembly of the reference genomes of oiltea-camellia, genes related to economic traits (flowering, photosynthesis, yield and oil component), disease resistance (anthracnose) and environmental stress tolerances (drought, cold, heat and nutrient deficiency). We also discussed future directions of integrating multiple omics for evaluating genetic resources and mining key genes of important traits, and the application of new molecular breeding and gene editing technologies to accelerate the breeding process of oiltea-camellia.

10.
Front Microbiol ; 14: 1152632, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007482

RESUMO

Camellia oleifera (C. oleifera) is a unique edible oil crop in China cultivated in the hilly southern mountains. Although C. oleifera is classified as a drought-tolerant tree species, drought remains the main factor limiting the growth of C. oleifera in summer and autumn. Using endophytes to improve crop drought tolerance is one effective strategy to meet our growing food crop demand. In this study, we showed that endophyte Streptomyces albidoflavus OsiLf-2 could mitigate the negative impact of drought stress on C. oleifera, thus improving seed, oil, and fruit quality. Microbiome analysis revealed that OsiLf-2 treatment significantly affected the microbial community structure in the rhizosphere soil of C. oleifera, decreasing both the diversity and abundance of the soil microbe. Likewise, transcriptome and metabolome analyses found that OsiLf-2 protected plant cells from drought stress by reducing root cell water loss and synthesizing osmoregulatory substances, polysaccharides, and sugar alcohols in roots. Moreover, we observed that OsiLf-2 could induce the host to resist drought stress by increasing its peroxidase activity and synthesizing antioxidants such as cysteine. A multi-omics joint analysis of microbiomes, transcriptomes, and metabolomes revealed OsiLf-2 assists C. oleifera in resisting drought stress. This study provides theoretical and technical support for future research on endophytes application to enhance the drought resistance, yield, and quality of C. oleifera.

11.
Food Chem ; 404(Pt B): 134308, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36323008

RESUMO

We report for the first time that curcumin is successfully encapsulated into a new natural pre-formed carrier, which was derived from arthrospore cell wall particles (APs) of probiotic Geotrichum candidum LG-8 and mainly composed of beta-1,4-glucan. Vacuum infusion process was used for efficient encapsulation of curcumin. The results showed that the encapsulation efficiency and yield of APs were 36.5 ± 0.9 % and 730.6 ± 26.5 µg/g (wet basis), respectively. Compared with the other probiotic carriers such as Saccharomyces cerevisiae, it could more effectively maintain the antioxidant property and storage capacity of curcumin under high temperature conditions. Simulated digestion was conducted to study in vitro release of curcumin encapsulated in APs, and showed a maximum bioaccessibility of 65.6 ± 3.8 %. In view of low-cost culture method, simple encapsulation process and high encapsulation capacity, G. candidum arthrospores as new natural encapsulation carriers have potential superiority in the practical application in food industry.


Assuntos
Curcumina , Parede Celular , Geotrichum , Saccharomyces cerevisiae
12.
J Agric Food Chem ; 70(38): 12095-12106, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36121066

RESUMO

In vitro ruminal fermentation is considered an efficient way to degrade crop residue. To better understand the microbial communities and their functions during in vitro ruminal fermentation, the microbiome and short chain fatty acid (SCFA) production were investigated using the metagenomic sequencing and rumen simulation technique (RUSITEC) system. A total of 1677 metagenome-assembled genomes (MAGs) were reconstructed, and 298 MAGs were found copresenting in metagenomic data of the current work and 58 previously ruminal representative samples. Additionally, the domains related to pectin and xylan degradation were overrepresented in the copresent MAGs compared with total MAGs. Among the copresent MAGs, we obtained 14 MAGs with SCFA-synthesis-related genes positively correlated with SCFA concentrations. The MAGs obtained from this study enable a better understanding of dominant microbial communities across in vivo and in vitro ruminal fermentation and show promise for pointing out directions for further research on in vitro ruminal fermentation.


Assuntos
Metagenoma , Microbiota , Animais , Biomassa , Ácidos Graxos Voláteis/metabolismo , Fermentação , Pectinas/metabolismo , Rúmen/metabolismo , Xilanos/metabolismo
13.
ISME J ; 16(12): 2775-2787, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35986094

RESUMO

Understanding the biodiversity and genetics of gut microbiomes has important implications for host physiology and industrial enzymes, whereas most studies have been focused on bacteria and archaea, and to a lesser extent on fungi and viruses. One group, still underexplored and elusive, is ciliated protozoa, despite its importance in shaping microbiota populations. Integrating single-cell sequencing and an assembly-and-identification pipeline, we acquired 52 high-quality ciliate genomes of 22 rumen morphospecies from 11 abundant morphogenera. With these genomes, we resolved the taxonomic and phylogenetic framework that revised the 22 morphospecies into 19 species spanning 13 genera and reassigned the genus Dasytricha from Isotrichidae to a new family Dasytrichidae. Comparative genomic analyses revealed that extensive horizontal gene transfers and gene family expansion provided rumen ciliate species with a broad array of carbohydrate-active enzymes (CAZymes) to degrade all major kinds of plant and microbial carbohydrates. In particular, the genomes of Diplodiniinae and Ophryoscolecinae species encode as many CAZymes as gut fungi, and ~80% of their degradative CAZymes act on plant cell-wall. The activities of horizontally transferred cellulase and xylanase of ciliates were experimentally verified and were 2-9 folds higher than those of the inferred corresponding bacterial donors. Additionally, the new ciliate dataset greatly facilitated rumen metagenomic analyses by allowing ~12% of the metagenomic sequencing reads to be classified as ciliate sequences.


Assuntos
Cilióforos , Rúmen , Animais , Rúmen/microbiologia , Filogenia , Biomassa , Cilióforos/genética , Genômica , Bactérias/genética , Fungos
14.
Mol Biol Evol ; 39(4)2022 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-35325213

RESUMO

The gene numbers and evolutionary rates of birds were assumed to be much lower than those of mammals, which is in sharp contrast to the huge species number and morphological diversity of birds. It is, therefore, necessary to construct a complete avian genome and analyze its evolution. We constructed a chicken pan-genome from 20 de novo assembled genomes with high sequencing depth, and identified 1,335 protein-coding genes and 3,011 long noncoding RNAs not found in GRCg6a. The majority of these novel genes were detected across most individuals of the examined transcriptomes but were seldomly measured in each of the DNA sequencing data regardless of Illumina or PacBio technology. Furthermore, different from previous pan-genome models, most of these novel genes were overrepresented on chromosomal subtelomeric regions and microchromosomes, surrounded by extremely high proportions of tandem repeats, which strongly blocks DNA sequencing. These hidden genes were proved to be shared by all chicken genomes, included many housekeeping genes, and enriched in immune pathways. Comparative genomics revealed the novel genes had 3-fold elevated substitution rates than known ones, updating the knowledge about evolutionary rates in birds. Our study provides a framework for constructing a better chicken genome, which will contribute toward the understanding of avian evolution and the improvement of poultry breeding.


Assuntos
Galinhas , Genoma , Animais , Galinhas/genética , Genômica , Mamíferos/genética , Análise de Sequência de DNA
15.
Chem Asian J ; 17(6): e202101414, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35156764

RESUMO

Owing to the high sensitivity, excellent programmability, and flexible obtainment through in vitro selection, RNA-cleaving DNAzymes have attracted increasing interest in developing DNAzyme-based sensors. In this review, we summarize the recent advances on DNAzyme-based sensing applications. We initially conclude two general strategies to expand the library of DNAzmes, in vitro selection to discover new DNAzymes towards different targets of interest and chemical modifications to endue the existing DNAzymes with new function or properties. We then discuss the recent applications of DNAzyme-based sensors for the detection of a variety of important biomoleucles both in vitro and in vivo. Finally, perspectives on the challenges and future directions in the development of DNAzyme-based sensors are provided.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , DNA Catalítico/química , RNA/química
16.
Angew Chem Int Ed Engl ; 60(36): 19889-19896, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34165234

RESUMO

Direct measurement of DNA repair is critical for the annotation of their clinical relevance and the discovery of drugs for cancer therapy. Here we reported a "repaired and activated" DNAzyme (RADzyme) by incorporating a single methyl lesion (O6 MeG, 3MeC, or 1MeA) at designated positions through systematic screening. We found that the catalytic activity of the RADzyme was remarkably suppressed and could be restored via enzyme-mediated DNA repair. Benefit from these findings, a fluorogenic RADzyme sensor was developed for the monitoring of MGMT-mediated repair of O6 MeG lesion. Importantly, the sensor allowed the evaluation of MGMT repair activity in different cells and under drugs treatment. Furthermore, another RADzyme sensor was engineered for the monitoring of ALKBH2-mediated repair of 3MeC lesion. This strategy provides a simple and versatile tool for the study of the basic biology of DNA repair, clinical diagnosis and therapeutic assessment.


Assuntos
DNA Catalítico/metabolismo , DNA/metabolismo , Alquilação , Linhagem Celular Tumoral , DNA/química , Reparo do DNA , Humanos
17.
Chem Commun (Camb) ; 57(31): 3816-3819, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33876130

RESUMO

A dual-aptamer based AND logic cascade circuit is activated on cell membranes in response to the receptor-aptamer binding, affording enhanced specificity for cell subtype recognition and gene silencing.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Membrana Celular/metabolismo , DNA/metabolismo , Neoplasias/genética , Neoplasias/patologia , Aptâmeros de Nucleotídeos/química , Linhagem Celular Tumoral , Membrana Celular/química , Membrana Celular/patologia , DNA/química , Inativação Gênica , Humanos
18.
Biochem Genet ; 59(2): 398-421, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33040171

RESUMO

Camellia oleifera Abel. (C. oleifera) as an important economic tree species in China has drawn growing attention because of its highly commercial, medic, cosmetic, and ornamental value. To deepen our understanding about the photosynthetic characters during the whole developmental stage as well as the molecular basis of photosynthesis, a comparative analysis of the leaf transcriptome of two C. oleifera cultivars, 'Guoyou No.13' (GY13) and 'Xianglin No.82' (XL82), with different photosynthetic characteristics from May to September has been conducted. In this study, a group of genes related to photosynthesis, hormone regulation, circadian clock and transcription factor, involved in the photosynthetic advantage. Photosynthetic parameters from May to September of these two cultivars provided evidence supporting photosynthetic advantage of GY13 compared to XL82. In addition, expression levels of 12 differentially expressed genes (DEGs) were validated using real-time PCR (RT-PCR). To screen gene clusters and hub genes that might directly regulated the photosynthetic differences between cultivars, a Weight Gene Co-expression Network Analysis (WGCNA) was conducted. Three co-expression network (module) and top ten connected genes (hub genes) were identified that might play crucial role in the regulatory network of photosynthesis. The results not only showed multiple functional genes that might involve in the differences of photosynthetic characteristics between cultivars, but also provide some evidences for the heat tolerance might be an important character which helps GY13 kept higher photosynthetic parameters than XL82 during the developmental stage. In summary, our transcriptomic approach together with RT-PCR tests allowed us to expand our understanding of the characters of C. oleifera cultivars with different photosynthetic efficiency during the developmental stage and to further exploring new candidate genes involve in high photosynthetic efficiency in molecular-assisted breeding program of C. oleifera.


Assuntos
Camellia , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Fotossíntese , Folhas de Planta , Transcriptoma , Camellia/genética , Camellia/metabolismo , Perfilação da Expressão Gênica , Folhas de Planta/genética , Folhas de Planta/metabolismo
19.
Genome Biol ; 21(1): 296, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33292531

RESUMO

INTRODUCTION: Despite the long-observed correlation between H3K9me3, chromatin architecture, and transcriptional repression, how H3K9me3 regulates genome higher-order organization and transcriptional activity in living cells remains unclear. RESULT: Here, we develop EpiGo (Epigenetic perturbation induced Genome organization)-KRAB to introduce H3K9me3 at hundreds of loci spanning megabases on human chromosome 19 and simultaneously track genome organization. EpiGo-KRAB is sufficient to induce genomic clustering and de novo heterochromatin-like domain formation, which requires SETDB1, a methyltransferase of H3K9me3. Unexpectedly, EpiGo-KRAB-induced heterochromatin-like domain does not result in widespread gene repression except a small set of genes with concurrent loss of H3K4me3 and H3K27ac. Ectopic H3K9me3 appears to spread in inactive regions but is largely restricted from transcriptional initiation sites in active regions. Finally, Hi-C analysis showed that EpiGo-KRAB reshapes existing compartments mainly at compartment boundaries. CONCLUSIONS: These results reveal the role of H3K9me3 in genome organization could be partially separated from its function in gene repression.


Assuntos
Cromatina/metabolismo , Epigênese Genética , Genoma , Histonas/metabolismo , Linhagem Celular , Feminino , Técnicas de Silenciamento de Genes , Inativação Gênica , Células HEK293 , Heterocromatina , Histona-Lisina N-Metiltransferase/genética , Humanos , Transcrição Gênica
20.
J Anim Sci ; 98(5)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32309860

RESUMO

An increasing number of studies have shown that quantitative trait loci (QTLs) at the end of chromosome 1 identified in different chicken breeds and populations exert significant effects on growth traits in chickens. Nevertheless, the causal genes underlying the QTL effect remain poorly understood. Using an updated gene database, a novel lncRNA (named LncFAM) was found at the end of chromosome 1 and located in a growth and digestion QTL. This study showed that the expression level of LncFAM in pancreas tissues with a high weight was significantly higher than that in pancreas tissues with a low weight, which indicates that the expression level of LncFAM was positively correlated with various growth phenotype indexes, such as growth speed and body weight. A polymorphism screening identified four polymorphisms with strong linkage disequilibrium in LncFAM: a 5-bp indel in the second exon, an A/G base mutation, and 7-bp and 97-bp indels in the second intron. A study of a 97-bp insertion in the second intron using an F2 chicken resource population produced by Anka and Gushi chickens showed that the mutant individuals with genotype II had the highest values for body weight (BW) at 0 days and 2, 4, 6, 8, 10 and 12 weeks, shank girth (SG) at 4, 8 and 12 weeks, chest width (CW) at 4, 8 and 12 weeks, body slant length (BSL) at 8 and 12 weeks, and pelvic width (PW) at 4, 8 and 12 weeks, followed by ID and DD genotypes. The amplification and typing of 2,716 chickens from ten different breeds, namely, the F2 chicken resource population, dual-type chickens, including Xichuan black-bone chickens, Lushi green-shell layers, Dongxiang green-shell layers, Changshun green-shell layers, and Gushi chickens, and commercial broilers, including Ross 308, AA, Cobb and Hubbard broilers, revealed that II was the dominant genotype. Interestingly, only genotype II existed among the tested populations of commercial broilers. Moreover, the expression level in the pancreas tissue of Ross 308 chickens was significantly higher than that in the pancreas tissue of Gushi chickens (P < 0.001), which might be related to the conversion rates among different chickens. The prediction and verification of the target gene of LncFAM showed that LncFAM might regulate the expression of its target gene FAM48A through cis-expression. Our results provide useful information on the mutation of LncFAM, which can be used as a potential molecular breeding marker.


Assuntos
Galinhas/genética , Cromossomos/genética , Polimorfismo Genético/genética , Locos de Características Quantitativas/genética , RNA Longo não Codificante/genética , Animais , Peso Corporal/genética , Cruzamento , Galinhas/crescimento & desenvolvimento , Galinhas/fisiologia , Feminino , Ligação Genética , Genótipo , Mutação INDEL , Masculino , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA