Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(13): e33888, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39027487

RESUMO

Background: Single Tumor-associated autoantibodies (TAAbs) and tumor-associated antigens (TAAs) have been found to have lower diagnostic efficacy in lung cancer. Our objective is to develop and validate a lung cancer prediction model that utilizes TAAbs and TAAs and to enhance the accuracy of lung cancer detection. Methods: 1830 subjects were randomly divided into training and validation sets at a 7:3 ratio for this study. Lasso regression analysis was used to remove collinear variables, whereas univariate logistic regression analysis was employed to identify potential independent risk factors for lung cancer. A diagnostic model was constructed using multivariate logistic analysis. The results were presented as a nomogram and assessed for various performance measures, including area under the curve, calibration curve, and decision curve analysis. Results: The diagnostic model was developed using gender, age, GAGE7, MAGE-A1, CA125, and CEA as variables. The training set had an AUC of 0.787, while the validation set had an AUC of 0.750. The calibration curves of the training and validation sets showed a strong agreement between anticipated and observed values. The nomogram performed better than any individual variable in both the training and validation sets in terms of net benefits for lung cancer detection, according to DCA analysis. Conclusions: This study proposes a diagnostic model for lung cancer that uses TAAbs and TAAs and incorporates individual characteristics. This model can be easily applied to personalized diagnosis.

2.
Proc Natl Acad Sci U S A ; 121(7): e2315476121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38319970

RESUMO

Marine photosynthetic dinoflagellates are a group of successful phytoplankton that can form red tides in the ocean and also symbiosis with corals. These features are closely related to the photosynthetic properties of dinoflagellates. We report here three structures of photosystem I (PSI)-chlorophylls (Chls) a/c-peridinin protein complex (PSI-AcpPCI) from two species of dinoflagellates by single-particle cryoelectron microscopy. The crucial PsaA/B subunits of a red tidal dinoflagellate Amphidinium carterae are remarkably smaller and hence losing over 20 pigment-binding sites, whereas its PsaD/F/I/J/L/M/R subunits are larger and coordinate some additional pigment sites compared to other eukaryotic photosynthetic organisms, which may compensate for the smaller PsaA/B subunits. Similar modifications are observed in a coral symbiotic dinoflagellate Symbiodinium species, where two additional core proteins and fewer AcpPCIs are identified in the PSI-AcpPCI supercomplex. The antenna proteins AcpPCIs in dinoflagellates developed some loops and pigment sites as a result to accommodate the changed PSI core, therefore the structures of PSI-AcpPCI supercomplex of dinoflagellates reveal an unusual protein assembly pattern. A huge pigment network comprising Chls a and c and various carotenoids is revealed from the structural analysis, which provides the basis for our deeper understanding of the energy transfer and dissipation within the PSI-AcpPCI supercomplex, as well as the evolution of photosynthetic organisms.


Assuntos
Antozoários , Dinoflagellida , Animais , Antozoários/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Dinoflagellida/metabolismo , Proliferação Nociva de Algas , Simbiose , Microscopia Crioeletrônica , Complexo de Proteína do Fotossistema I/metabolismo , Clorofila/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA