Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 265
Filtrar
1.
PLoS Pathog ; 20(6): e1012311, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38885273

RESUMO

The majority of rod-shaped and some filamentous plant viruses encode a cysteine-rich protein (CRP) that functions in viral virulence; however, the roles of these CRPs in viral infection remain largely unknown. Here, we used barley stripe mosaic virus (BSMV) as a model to investigate the essential role of its CRP in virus morphogenesis. The CRP protein γb directly interacts with BSMV coat protein (CP), the mutations either on the His-85 site in γb predicted to generate a potential CCCH motif or on the His-13 site in CP exposed to the surface of the virions abolish the zinc-binding activity and their interaction. Immunogold-labeling assays show that γb binds to the surface of rod-shaped BSMV virions in a Zn2+-dependent manner, which enhances the RNA binding activity of CP and facilitates virion assembly and stability, suggesting that the Zn2+-dependent physical association of γb with the virion is crucial for BSMV morphogenesis. Intriguingly, the tightly binding of diverse CRPs to their rod-shaped virions is a general feature employed by the members in the families Virgaviridae (excluding the genus Tobamovirus) and Benyviridae. Together, these results reveal a hitherto unknown role of CRPs in the assembly and stability of virus particles, and expand our understanding of the molecular mechanism underlying virus morphogenesis.


Assuntos
Vírion , Zinco , Zinco/metabolismo , Vírion/metabolismo , Proteínas do Capsídeo/metabolismo , Montagem de Vírus/fisiologia , Vírus de Plantas/metabolismo , Vírus de Plantas/fisiologia , Doenças das Plantas/virologia , Cisteína/metabolismo , Proteínas Virais/metabolismo , Morfogênese
2.
Angew Chem Int Ed Engl ; : e202410414, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924578

RESUMO

A series of TADF-active compounds: 0D chiral Ln-Ag(I) clusters L-/D-Ln2Ag28-0D (Ln = Eu/Gd) and 2D chiral Ln-Ag(I) cluster-based frameworks L-/D-Ln2Ag28-2D (Ln = Gd) has been synthesized. Atomic-level structural analysis showed that the chiral Ag(I) cluster units {Ag14S12} in L-/D-Ln2Ag28-0D and L-/D-Ln2Ag28-2D exhibited similar configurations, linked by varying numbers of [Ln(H2O)x]3+ (x = 6 for 0D, x = 3 for 2D) to form the final target compounds. Temperature-dependent emission spectra and decay lifetimes measurement demonstrated the presence of TADF in L-Ln2Ag28-0D (Ln = Eu/Gd) and L-Gd2Ag28-2D. Experimentally, the remarkable TADF properties primarily originated from {Ag14S12} moieties in these compounds. Notably, {Ag14S12} in L-Eu2Ag28-0D and L-Gd2Ag28-2D displayed higher promote fluorescence rate and shorter TADF decay times than L-Gd2Ag28-0D. Combined with theoretical calculations, it was determined that the TADF behaviors of {Ag14S12} cluster units were induced by 4f perturbation of Ln3+ ions. Specially, while maintaining ΔE(S1-T1) small enough, it can significantly increase k(S1→S0) and reduce TADF decay time by adjusting the type or number of Ln3+ ions, thus achieving the purpose of improving TADF for cluster-based luminescent materials.

3.
J Immunol ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38905108

RESUMO

Hepatitis E virus (HEV) is a worldwide zoonotic and public health concern. The study of HEV biology is helpful for designing viral vaccines and drugs. Nanobodies have recently been considered appealing materials for viral biological research. In this study, a Bactrian camel was immunized with capsid proteins from different genotypes (1, 3, 4, and avian) of HEV. Then, a phage library (6.3 × 108 individual clones) was constructed using peripheral blood lymphocytes from the immunized camel, and 12 nanobodies against the truncated capsid protein of genotype 3 HEV (g3-p239) were screened. g3-p239-Nb55 can cross-react with different genotypes of HEV and block Kernow-C1/P6 HEV from infecting HepG2/C3A cells. To our knowledge, the epitope recognized by g3-p239-Nb55 was determined to be a novel conformational epitope located on the surface of viral particles and highly conserved among different mammalian HEV isolates. Next, to increase the affinity and half-life of the nanobody, it was displayed on the surface of ferritin, which can self-assemble into a 24-subunit nanocage, namely, fenobody-55. The affinities of fenobody-55 to g3-p239 were ∼20 times greater than those of g3-p239-Nb55. In addition, the half-life of fenobody-55 was nine times greater than that of g3-p239-Nb55. G3-p239-Nb55 and fenobody-55 can block p239 attachment and Kernow-C1/P6 infection of HepG2/C3A cells. Fenobody-55 can completely neutralize HEV infection in rabbits when it is preincubated with nonenveloped HEV particles. Our study reported a case in which a nanobody neutralized HEV infection by preincubation, identified a (to our knowledge) novel and conserved conformational epitope of HEV, and provided new material for researching HEV biology.

4.
J Phys Chem B ; 128(23): 5766-5780, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38829925

RESUMO

Herein, we employed high-flux backscattering spectroscopy to capture for the first time the motions of hydrated vanadyl ions in ionomer nanocomposites prepared by both solution-cast and in situ sol-gel condensation methods. Both local and jump diffusion coefficients of the hydrated vanadyl (VO2+) ions as well as the dynamic length scales of ion motions and the fraction of immobile hydrogen atoms were extracted from the scattering spectra. Notably, for solution-cast membranes, the jump and local diffusion coefficients of hydrated VO2+ ions were seen to decrease by over 10- and 4-fold, respectively, with the introduction of 10 mass % silica nanoparticles (SiNPs) compared to their neat counterparts. Further, the VO2+ diffusion coefficients were observed to decrease with thermal annealing, though the impact of annealing was less significant than that seen with the introduction of SiNPs. Finally, in general, thermal annealing and the introduction of SiNPs had no measurable impact on the fraction of immobile hydrogen atoms in both solution-cast and sol-gel ionomer nanocomposites. The data observed in this work, in conjunction with previous structural and chain dynamics studies on hydrated Nafion-SiNP nanocomposites, suggest that a combination of stiffening of the segmental dynamics as well as a decrease in available sulfonic acid groups facilitating transport leads to an overall decrease in mobility of vanadium ions in these ionomer nanocomposites.

5.
Bone ; : 117172, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38909879

RESUMO

Gain-of-function mutations in the low-density lipoprotein receptor-related protein 5 (LRP5) can cause high-bone-mass (HBM) phenotype, with 19 identified mutations so far. The A242T mutation in LRP5 has been found in 9 families, making it one of the most prevalent mutations. However, the correlation between the A242T mutation and HBM phenotype remains unverified in animal models. This study aimed to investigate the bone properties in a new transgenic mouse model carrying the LRP5 A241T missense mutation, equivalent to A242T in humans. Heterozygous Lrp5A241T mice were generated using CRISPR/Cas9 genome editing. Body weight increased with age from 4 to 16 weeks, higher in males than females, with no difference between Lrp5A241T mice and wild-type control. Micro-CT showed slightly longer femur and notably elevated trabecular bone mass of the femur and fifth lumbar spine with higher bone mineral density, bone volume fraction, and trabecular thickness in Lrp5A241T mice compared to wild-type mice. Additionally, increased cortical bone thickness and volume of the femur shaft and skull were observed in Lrp5A241T mice. Three-point bending tests of the tibia demonstrated enhanced bone strength properties in Lrp5A241T mice. Histomorphometry confirmed that the A241T mutation increased bone formation without affecting osteoblast number and reduced resorption activities in vivo. In vitro experiments indicated that the LRP5 A241T mutation enhanced osteogenic capacity of osteoblasts with upregulation of the Wnt signaling pathway, with no significant impact on the resorptive activity of osteoclasts. In summary, mice carrying the LRP5 A241T mutation displayed high bone mass and quality due to enhanced bone formation and reduced bone resorption in vivo, potentially mediated by the augmented osteogenic potential of osteoblasts. Continued investigation into the regulatory mechanisms of its bone metabolism and homeostasis may contribute to the advancement of novel therapeutic strategies for bone disorders.

6.
Int J Biol Macromol ; 273(Pt 2): 132685, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38823749

RESUMO

To overcome the trade-off challenge encountered in the engineering of alginate lyase AlyG2 from Seonamhaeicola algicola Gy8T and to expand its potential industrial applications, we devised a two-step strategy encompassing activity enhancement followed by thermal stability engineering. To enhance the specific activity of efficient AlyG2, we strategically substituted residues with bulky steric hindrance proximal to the active pocket with glycine or alanine. This led to the generation of three promising positive mutants, with particular emphasis on the T91S mutant, exhibiting a 1.91-fold specific activity compared to the wild type. To mitigate the poor thermal stability of T91S, mutants with negative ΔΔG values in the thermal flexibility region were screened out. Notably, the S72Ya mutant not only displayed 17.96 % further increase in specific activity but also exhibited improved stability compared to T91S, manifesting as a remarkable 30.97 % increase in relative activity following a 1-hour incubation at 42 °C. Furthermore, enhanced kinetic stability was observed. To gain deeper insights into the mechanism underlying the enhanced thermostability of the S72Ya mutant, we conducted molecular dynamics simulations, principal component analysis (PCA), dynamic cross-correlation map (DCCM), and free energy landscape (FEL) analysis. The results unveiled a reduction in the flexibility of the surface loop, a stronger correlation dynamic and a narrower motion subspace in S72Ya system, along with the formation of more stable hydrogen bonds. Collectively, our findings suggest amino acids substitutions resulting in smaller side chains proximate to the active site can positively impact enzyme activity, while reducing the flexibility of surface loops emerges as a pivotal factor in conferring thermal stability. These insights offer valuable guidance and a framework for the engineering of other enzyme types.

7.
Ecotoxicol Environ Saf ; 280: 116569, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878331

RESUMO

Manganese (Mn) exposure is a common environmental risk factor for Parkinson's disease (PD), with pathogenic mechanisms associated with dopaminergic neuron damage and neuroinflammation. Mesenchymal stem cells (MSCs)-derived small extracellular vesicles (sEVs) have emerged as a novel therapeutic approach for neural damage repair. The functional sEVs released from MSCs when they are induced into dopaminergic progenitors may have a better repair effect on neural injury. Therefore, we collected sEVs obtained from primary human nasal mucosal mesenchymal stem cells (hnmMSC-sEVs) or cells in the process of dopaminergic progenitor cell differentiation (da-hnmMSC-sEVs), which were cultured in a 3D dynamic system, and observed their repair effects and mechanisms of Mn-induced neural damage by intranasal administration of sEVs. In Mn-exposed mice, sEVs could reach the site of brain injury after intranasal administration, da-hnmMSC enhanced the repair effects of sEVs in neural damage and behavioral competence, as evidenced by restoration of motor dysfunction, enhanced neurogenesis, decreased microglia activation, up-regulation of anti-inflammatory factors, and down-regulation of pro-inflammatory factors. The transcriptomics of hnmMSC-sEVs and da-hnmMSC-sEVs revealed that miRNAs, especially miR-494-3p in sEVs were involved in neuroprotective and anti-inflammatory effects. Overexpression of miR-494-3p in sEVs inhibited Mn-induced inflammation and neural injury, and its repair mechanism might be related to the down-regulation of CMPK2 and NLRP3 in vitro experiments. Thus, intranasal delivery of da-hnmMSC-sEVs is an effective strategy for the treatment of neural injury repair.


Assuntos
Diferenciação Celular , Neurônios Dopaminérgicos , Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Mucosa Nasal , Animais , MicroRNAs/genética , Camundongos , Humanos , Diferenciação Celular/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Manganês/toxicidade , Masculino , Administração Intranasal , Células Cultivadas , Camundongos Endogâmicos C57BL
8.
Cell Mol Neurobiol ; 44(1): 49, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836960

RESUMO

Mild hypothermia (MH) is an effective measure to alleviate cerebral ischemia-reperfusion (I/R) injury. However, the underlying biological mechanisms remain unclear. This study set out to investigate dynamic changes in urinary proteome due to MH in rats with cerebral I/R injury and explore the neuroprotective mechanisms of MH. A Pulsinelli's four-vessel occlusion (4-VO) rat model was used to mimic global cerebral I/R injury. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was employed to profile the urinary proteome of rats with/without MH (32 °C) treatment after I/R injury. Representative differentially expressed proteins (DEPs) associated with MH were validated by western blotting in hippocampus. A total of 597 urinary proteins were identified, among which 119 demonstrated significant changes associated with MH. Gene Ontology (GO) annotation of the DEPs revealed that MH significantly enriched in endopeptidase activity, inflammatory response, aging, response to oxidative stress and reactive oxygen species, blood coagulation, and cell adhesion. Notably, changes in 12 DEPs were significantly reversed by MH treatment. Among them, 8 differential urinary proteins were previously reported to be closely associated with brain disease, including NP, FZD1, B2M, EPCR, ATRN, MB, CA1and VPS4A. Two representative proteins (FZD1, B2M) were further validated by western blotting in the hippocampus and the results were shown to be consistent with urinary proteomic analysis. Overall, this study strengthens the idea that urinary proteome can sensitively reflect pathophysiological changes in the brain, and appears to be the first study to explore the neuroprotective effects of MH by urinary proteomic analysis. FZD1 and B2M may be involved in the most fundamental molecular biological mechanisms of MH neuroprotection.


Assuntos
Isquemia Encefálica , Hipotermia Induzida , Proteômica , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Animais , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/urina , Proteômica/métodos , Masculino , Hipotermia Induzida/métodos , Isquemia Encefálica/metabolismo , Isquemia Encefálica/urina , Proteoma/metabolismo , Ratos , Hipocampo/metabolismo
9.
Alzheimers Res Ther ; 16(1): 121, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831312

RESUMO

BACKGROUND: Beta-amyloid (Aß) deposition in the brain parenchyma is a crucial initiating step in the amyloid cascade hypothesis of Alzheimer's disease (AD) pathology. Furthermore, dysfunction of plaque-associated microglia, also known as disease-associated microglia (DAM) has been reported to accelerate Aß deposition and cognitive impairment. Our previous research demonstrated that intermittent hypoxia training (IHT) improved AD pathology by upregulating autophagy in DAM, thereby enhancing oligomeric Aß (oAß) clearance. Considering that oAß internalization is the initial stage of oAß clearance, this study focused on the IHT mechanism involved in upregulating Aß uptake by DAM. METHODS: IHT was administered to 8-month-old APP/PS1 mice or 6-month-old microglial vacuolar protein sorting 35 (VPS35) knockout mice in APP/PS1 background (MG VPS35 KO: APP/PS1) for 28 days. After the IHT, the spatial learning-memory capacity of the mice was assessed. Additionally, AD pathology was determined by estimating the nerve fiber and synapse density, Aß plaque deposition, and Aß load in the brain. A model of Aß-exposed microglia was constructed and treated with IHT to explore the related mechanism. Finally, triggering receptor expressed on myeloid cells 2 (TREM2) intracellular recycling and Aß internalization were measured using a fluorescence tracing technique. RESULTS: Our results showed that IHT ameliorated cognitive function and Aß pathology. In particular, IHT enhanced Aß endocytosis by augmenting the intracellular transport function of microglial TREM2, thereby contributing to Aß clearance. Furthermore, IHT specifically upregulated VPS35 in DAM, the primary cause for the enhanced intracellular recycling of TREM2. IHT lost ameliorative effect on Aß pathology in MG VPS35 KO: APP/PS1 mice brain. Lastly, the IHT mechanism of VPS35 upregulation in DAM was mediated by the transcriptional regulation of VPS35 by transcription factor EB (TFEB). CONCLUSION: IHT enhances Aß endocytosis in DAM by upregulating VPS35-dependent TREM2 recycling, thereby facilitating oAß clearance and mitigation of Aß pathology. Moreover, the transcriptional regulation of VPS35 by TFEB demonstrates a close link between endocytosis and autophagy in microglia. Our study further elucidates the IHT mechanism in improving AD pathology and provides evidence supporting the potential application of IHT as a complementary therapy for AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Endocitose , Glicoproteínas de Membrana , Microglia , Placa Amiloide , Receptores Imunológicos , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Microglia/metabolismo , Camundongos , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Peptídeos beta-Amiloides/metabolismo , Endocitose/fisiologia , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Camundongos Transgênicos , Hipóxia/metabolismo , Camundongos Knockout , Modelos Animais de Doenças , Masculino , Encéfalo/metabolismo , Encéfalo/patologia , Camundongos Endogâmicos C57BL
10.
Sheng Li Xue Bao ; 76(3): 365-375, 2024 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-38939931

RESUMO

The purpose of the study was to investigate the mechanism of TFEB activator 1 (TA1) improving the autophagic degradation of oligomeric amyloid-ß (oAß) in microglia, and to explore the therapeutic effect of TA1 on an in vitro model of microglia in Alzheimer's disease (AD). Primary microglia were exposed to 1 µmol/L oAß for 0, 3, 12, and 24 h respectively to construct the in vitro model of microglia in AD. In order to explore the therapeutic effect of TA1, primary microglia were co-treated with 1 µmol/L oAß and 1 µmol/L TA1 for 12 h. To determine the autophagy flux, the above cells were further treated with 100 nmol/L Bafilomycin A1 for 1 h before fixation. Fluorescent probes were used to detect the endocytosis or degradation of oAß1-42 by microglia. The autophagic flux was determined by infection of lentivirus mCherry-EGFP-LC3. The nuclear TFEB intensity, the autophagosomes number, and the colocalization ratio of oAß1-42 with lysosome-associated membrane protein 1 (LAMP1) or microtubule-associated protein light chain 3 (LC3), were detected by immunofluorescence assay. Expressions of autophagy-related-genes, including Lamp1, Atg5, and Map1lc3b, were detected by qRT-PCR. Results showed that prolonged oAß exposure inhibited the endocytosis and degradation of oAß by microglia. Meanwhile, the number of autophagosomes and autophagy flux in microglia decreased after 12 h of oAß treatment. We further found that the nuclear expression of autophagy regulator TFEB decreased after 12 h of oAß exposure, resulting in the decrease of autophagy genes, thus leading to the damage of autophagic degradation of oAß. Therefore, long-term oAß exposure was considered to construct the in vitro model of microglia in AD. After TA1 treatment, the nuclear expression of TFEB in cells was obviously upregulated. TA1 treatment upregulated the expressions of autophagy-related genes, leading to the recovery of autophagy flux. TA1 also recovered the endocytosis and degradation of oAß by microglia. In conclusion, TA1 could improve oAß clearance by microglia in AD by upregulating microglial TFEB-mediated autophagy, suggesting TA1 as a potential therapeutic drug for AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Microglia , Microglia/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Doença de Alzheimer/metabolismo , Células Cultivadas , Camundongos
11.
World J Pediatr Surg ; 7(2): e000754, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737962

RESUMO

Background: In recent years, Mendelian randomization (MR) has been widely used to infer causality of related disease risk exposures. However, this strategy has not been applied to biliary atresia (BA). Methods: Genome-wide association studies (GWAS) data of 41 inflammatory cytokines, 731 immune cell traits, and 1400 metabolites were obtained from public databases as exposure factors. The outcome information was obtained from a GWAS meta-analysis of 499 children with BA and 1928 normal controls. Inverse variance weighting was the primary causality analysis. Cochran Q-test, MR-Egger intercept, MR pleiotropy residual sum and outlier, and 'leave-one-out' analyses were used for sensitivity analysis. Reverse MR, MR-Steiger, and Linkage Disequilibrium Score were used to exclude the effects of reverse causality, genetic association, and linkage disequilibrium. Results: MR results showed that a total of seven traits had potential causal relationships with BA, including three inflammatory cytokines: eotaxin (odds ratio (OR)=1.45, 95% confidence interval (CI): 1.08 to 1.95, p FDR=0.18), G-CSF (OR=4.21, 95% CI: 1.75 to 10.13, p FDR=0.05) and MCP-1/MCAF (OR=1.53, 95% CI: 1.12 to 2.10, p FDR=0.14); three immune cell traits: CD8dim NKT/T cells ratio (OR=0.59, 95% CI: 0.45 to 0.77, p FDR=0.06), CD8dim NKT counts (OR=0.58, 95% CI: 0.43 to 0.78, p FDR=0.06), CD8dim NKT/lymphocyte ratio (OR=0.63, 95% CI: 0.49 to 0.81, p FDR=0.06); one metabolite: X-12261 levels (OR=2.86, 95% CI: 1.73 to 4.74, p FDR=0.06). Conclusions: In this study, eotaxin, G-CSF, MCP-1/MCAF, and X-12261 levels were shown to be risk factors for BA. However, CD8dim NKT/T cells ratio, CD8dim NKT counts, and CD8dim NKT/lymphocyte ratio were protective factors for BA. These findings provided a promising genetic basis for the etiology, diagnosis, and treatment of BA.

12.
Bioorg Med Chem ; 106: 117752, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749341

RESUMO

Bromodomain protein 4 (BRD4) is a member of the BET family, and its overexpression is closely associated with the development of many tumors. Inhibition of BRD4 shows great therapeutic potential in anti-tumor, and pan-BRD4 inhibitors show adverse effects of dose limiting toxicity and thrombocytopenia in clinical trials. To improve clinical effects and reduce side effects, more efforts have focused on seeking selective inhibitors of BD1 or BD2. Herein, a series of indole-2-one derivatives were designed and synthesized through docking-guided optimization to find BRD4-BD1 selective inhibitors, and their BRD4 inhibitory and antiproliferation activities were evaluated. Among them, compound 21r had potent BRD4 inhibitory activity (the IC50 values of 41 nM and 313 nM in BD1 and BD2 domain), excellent anti-proliferation (the IC50 values of 4.64 ± 0.30 µM, 0.78 ± 0.03 µM, 5.57 ± 1.03 µM against HL-60, MV-4-11 and HT-29 cells), and displayed low toxicity against normal cell GES-1 cells. Further studies revealed that 21r inhibited proliferation by decreasing the expression of proto-oncogene c-Myc, blocking cell cycle in G0/G1 phase, and inducing apoptosis in MV-4-11 cells in a dose-dependent manner. All the results showed that compound 21r was a potent BRD4 inhibitor with BD1 selectivity, which had potential in treatment of leukemia.


Assuntos
Antineoplásicos , Proteínas de Ciclo Celular , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Indóis , Fatores de Transcrição , Humanos , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Indóis/química , Indóis/farmacologia , Indóis/síntese química , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Estrutura Molecular , Descoberta de Drogas , Relação Dose-Resposta a Droga , Proto-Oncogene Mas , Apoptose/efeitos dos fármacos , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Proteínas que Contêm Bromodomínio
13.
Int J Mol Sci ; 25(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38791295

RESUMO

To achieve the environmentally friendly and rapid green synthesis of efficient and stable AgNPs for drug-resistant bacterial infection, this study optimized the green synthesis process of silver nanoparticles (AgNPs) using Dihydromyricetin (DMY). Then, we assessed the impact of AgNPs on zebrafish embryo development, as well as their therapeutic efficacy on zebrafish infected with Methicillin-resistant Staphylococcus aureus (MRSA). Transmission electron microscopy (TEM) and dynamic light-scattering (DLS) analyses revealed that AgNPs possessed an average size of 23.6 nm, a polymer dispersity index (PDI) of 0.197 ± 0.0196, and a zeta potential of -18.1 ± 1.18 mV. Compared to other published green synthesis products, the optimized DMY-AgNPs exhibited smaller sizes, narrower size distributions, and enhanced stability. Furthermore, the minimum concentration of DMY-AgNPs required to affect zebrafish hatching and survival was determined to be 25.0 µg/mL, indicating the low toxicity of DMY-AgNPs. Following a 5-day feeding regimen with DMY-AgNP-containing food, significant improvements were observed in the recovery of the gills, intestines, and livers in MRSA-infected zebrafish. These results suggested that optimized DMY-AgNPs hold promise for application in aquacultures and offer potential for further clinical use against drug-resistant bacteria.


Assuntos
Antibacterianos , Flavonóis , Química Verde , Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Prata , Peixe-Zebra , Animais , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Nanopartículas Metálicas/química , Prata/química , Prata/farmacologia , Flavonóis/farmacologia , Flavonóis/química , Química Verde/métodos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Infecções Estafilocócicas/tratamento farmacológico , Testes de Sensibilidade Microbiana
14.
Dig Liver Dis ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38744557

RESUMO

OBJECTIVES: This study presents a novel computer-aided diagnosis (CADx) designed for optically diagnosing colorectal polyps using white light imaging (WLI).We aimed to evaluate the effectiveness of the CADx and its auxiliary role among endoscopists with different levels of expertise. METHODS: We collected 2,324 neoplastic and 3,735 nonneoplastic polyp WLI images for model training, and 838 colorectal polyp images from 740 patients for model validation. We compared the diagnostic accuracy of the CADx with that of 15 endoscopists under WLI and narrow band imaging (NBI). The auxiliary benefits of CADx for endoscopists of different experience levels and for identifying different types of colorectal polyps was also evaluated. RESULTS: The CADx demonstrated an optical diagnostic accuracy of 84.49%, showing considerable superiority over all endoscopists, irrespective of whether WLI or NBI was used (P < 0.001). Assistance from the CADx significantly improved the diagnostic accuracy of the endoscopists from 68.84% to 77.49% (P = 0.001), with the most significant impact observed among novice endoscopists. Notably, novices using CADx-assisted WLI outperform junior and expert endoscopists without such assistance. CONCLUSIONS: The CADx demonstrated a crucial role in substantially enhancing the precision of optical diagnosis for colorectal polyps under WLI and showed the greatest auxiliary benefits for novice endoscopists.

15.
Virulence ; 15(1): 2349768, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38736039

RESUMO

ST11 is the most common lineage among carbapenem-resistant Klebsiella pneumoniae (CRKP) infections in Asia. Diverse morphotypes resulting from genetic mutations are associated with significant differences in microbial characteristics among K. pneumoniae isolates. Here, we investigated the genetic determinants and critical characteristics associated with distinct morphotypes of ST11 CRKP. An ST11-KL47 CRKP isolate carrying a pLVPK-like virulence plasmid was isolated from a patient with a bloodstream infection; the isolate had the "mcsw" morphotype. Two distinct morphotypes ("ntrd" and "msdw") were derived from this strain during in vitro passage. Whole genome sequencing was used to identify mutations that cause the distinct morphotypes of ST11 CRKP. Transmission electron microscopy, antimicrobial susceptibility tests, growth assays, biofilm formation, virulence assays, membrane permeability assays, and RNA-seq analysis were used to investigate the specific characteristics associated with different morphotypes of ST11 CRKP. Compared with the parental mcsw morphotype, the ntrd morphotype resulted from mutation of genes involved in capsular polysaccharide biosynthesis (wza, wzc, and wbaP), a result validated by gene knockout experiments. This morphotype showed capsule deficiency and lower virulence potential, but higher biofilm production. By contrast, the msdw morphotype displayed competition deficiency and increased susceptibility to chlorhexidine and polymyxin B. Further analyses indicated that these characteristics were caused by interruption of the sigma factor gene rpoN by insertion mutations and deletion of the rpoN gene, which attenuated membrane integrity presumably by downregulating the phage shock protein operon. These data expand current understanding of genetic, virulence, and antimicrobial resistance characteristics associated with distinct morphotypes in ST11 CRKP.


Assuntos
Antibacterianos , Biofilmes , Carbapenêmicos , Infecções por Klebsiella , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/patogenicidade , Virulência , Infecções por Klebsiella/microbiologia , Humanos , Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Carbapenêmicos/farmacologia , Animais , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Camundongos , Mutação , Sequenciamento Completo do Genoma , Plasmídeos/genética , Farmacorresistência Bacteriana
16.
Dev Comp Immunol ; 157: 105190, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38697378

RESUMO

Toll-like receptor 1 (TLR1) is a pattern recognition receptor that plays critical roles in triggering immune activation via detecting bacterial lipoproteins and lipopeptides. In this study, the genetic characteristic of TLR1 was studied for an important aquaculture fish, swamp eel Monopterus albus. The eel has been seriously threatened by infectious diseases. However, a low level of genetic heterogeneity in the fish that has resulted from a demographic bottleneck presents further challenges in breeding for disease resistance. A comparison with the homologue of closely related species M. javanensis revealed that amino acid replacement (nonsynonymous) but not silent (synonymous) differences have accumulated nonrandomly over the coding sequences of the receptors at the early stage of their phylogenetic split. The combined results from comparative analyses of nonsynonymous-to-synonymous polymorphisms showed that the receptor has undergone significant diversification in M. albus driven by adaptive selection likely after the genetic bottleneck. Some of the changes reported here have taken place in the structures mediating heterodimerization with co-receptor TLR2, ligand recognition, and/or formation of active signaling complex with adaptor, which highlighted key structural elements and strategies of TLR1 in arms race against exogenous challenges. The findings of this study will add to the knowledge base of genetic engineering and breeding for disease resistance in the eel.


Assuntos
Proteínas de Peixes , Filogenia , Smegmamorpha , Receptor 1 Toll-Like , Animais , Receptor 1 Toll-Like/metabolismo , Receptor 1 Toll-Like/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Smegmamorpha/genética , Smegmamorpha/imunologia , Imunidade Inata , Polimorfismo Genético , Resistência à Doença/genética , Resistência à Doença/imunologia , Evolução Molecular , Doenças dos Peixes/imunologia
17.
Environ Res ; 252(Pt 3): 119061, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38704011

RESUMO

Sludge is one of the primary reservoirs of microplastics (MPs), and the effects of MPs on subsequent sludge treatment raised attention. Given the entry pathways, MPs would exhibit different properties, but the entry pathway-dependent effect of MPs on sludge treatment performance and the fates of antibiotic resistance genes (ARGs), another high-risk emerging contaminant, were seldom documented. Herein, MPs with two predominant entry pathways, including wastewater-derived (WW-derived) and anaerobic digestion-introduced (AD-introduced), were used to investigate the effects on AD performance and ARGs abundances. The results indicated that WW-derived MPs, namely the MPs accumulated in sludge during the wastewater treatment process, exhibited significant inhibition on methane production by 22.8%-71.6%, while the AD-introduced MPs, being introduced in the sludge AD process, slightly increased the methane yield by 4.7%-17.1%. Meanwhile, MPs were responsible for promoting transmission of target ARGs, and polyethylene terephthalate MPs (PET-MPs) showed a greater promotion effect (0.0154-0.0936) than polyamide MPs (PA-MPs) (0.0013-0.0724). Compared to size, entry pathways and types played more vital roles on MPs influences. Investigation on mechanisms based on microbial community structure revealed characteristics (aging degree and types) of MPs determined the differences of AD performance and ARGs fates. WW-derived MPs with longer aging period and higher aging degree would release toxics and decrease the activities of microorganisms, resulting in the negative impact on AD performance. However, AD-introduced MPs with short aging period exhibited marginal impacts on AD performance. Furthermore, the co-occurrent network analysis suggested that the variations of potential host bacteria induced by MPs with different types and aging degree attributed to the dissemination of ARGs. Distinctively from most previous studies, the MPs with different sizes did not show remarkable effects on AD performance and ARGs fates. Our findings benefited the understanding of realistic environmental behavior and effect of MPs with different sources.


Assuntos
Metano , Microplásticos , Esgotos , Metano/metabolismo , Esgotos/microbiologia , Anaerobiose , Microplásticos/toxicidade , Eliminação de Resíduos Líquidos , Resistência Microbiana a Medicamentos/genética , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
18.
Proc Natl Acad Sci U S A ; 121(18): e2312111121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38657041

RESUMO

Class II histone deacetylases (HDACs) are important in regulation of gene transcription during T cell development. However, our understanding of their cell-specific functions is limited. In this study, we reveal that class IIa Hdac4 and Hdac7 (Hdac4/7) are selectively induced in transcription, guiding the lineage-specific differentiation of mouse T-helper 17 (Th17) cells from naive CD4+ T cells. Importantly, Hdac4/7 are functionally dispensable in other Th subtypes. Mechanistically, Hdac4 interacts with the transcription factor (TF) JunB, facilitating the transcriptional activation of Th17 signature genes such as Il17a/f. Conversely, Hdac7 collaborates with the TF Aiolos and Smrt/Ncor1-Hdac3 corepressors to repress transcription of Th17 negative regulators, including Il2, in Th17 cell differentiation. Inhibiting Hdac4/7 through pharmacological or genetic methods effectively mitigates Th17 cell-mediated intestinal inflammation in a colitis mouse model. Our study uncovers molecular mechanisms where HDAC4 and HDAC7 function distinctively yet cooperatively in regulating ordered gene transcription during Th17 cell differentiation. These findings suggest a potential therapeutic strategy of targeting HDAC4/7 for treating Th17-related inflammatory diseases, such as ulcerative colitis.


Assuntos
Diferenciação Celular , Colite , Histona Desacetilases , Correpressor 1 de Receptor Nuclear , Células Th17 , Animais , Células Th17/citologia , Células Th17/metabolismo , Células Th17/imunologia , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Camundongos , Colite/genética , Colite/metabolismo , Colite/imunologia , Transcrição Gênica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Correpressor 2 de Receptor Nuclear/metabolismo , Correpressor 2 de Receptor Nuclear/genética , Interleucina-17/metabolismo , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Humanos , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Interleucina-2/metabolismo
19.
Sci Total Environ ; 931: 172466, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38626826

RESUMO

The burgeoning issue of plasmid-mediated resistance genes (ARGs) dissemination poses a significant threat to environmental integrity. However, the prediction of ARGs prevalence is overlooked, especially for emerging ARGs that are potentially evolving gene exchange hotspot. Here, we explored to classify plasmid or chromosome sequences and detect resistance gene prevalence by using DNABERT. Initially, the DNABERT fine-tuned in plasmid and chromosome sequences followed by multilayer perceptron (MLP) classifier could achieve 0.764 AUC (Area under curve) on external datasets across 23 genera, outperforming 0.02 AUC than traditional statistic-based model. Furthermore, Escherichia, Pseudomonas single genera based model were also be trained to explore its predict performance to ARGs prevalence detection. By integrating K-mer frequency attributes, our model could boost the performance to predict the prevalence of ARGs in an external dataset in Escherichia with 0.0281-0.0615 AUC and Pseudomonas with 0.0196-0.0928 AUC. Finally, we established a random forest model aimed at forecasting the relative conjugation transfer rate of plasmids with 0.7956 AUC, drawing on data from existing literature. It identifies the plasmid's repression status, cellular density, and temperature as the most important factors influencing transfer frequency. With these two models combined, they provide useful reference for quick and low-cost integrated evaluation of resistance gene transfer, accelerating the process of computer-assisted quantitative risk assessment of ARGs transfer in environmental field.


Assuntos
Transferência Genética Horizontal , Plasmídeos , Plasmídeos/genética , Conjugação Genética , Farmacorresistência Bacteriana/genética , Pseudomonas/genética
20.
Bioresour Technol ; 400: 130693, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608785

RESUMO

The synchronous bioelectricity generation and dissimilatory nitrate reduction to ammonium (DNRA) pathway in Klebsiella variicola C1 was investigated. The presence of bioelectricity facilitated cell growth on the anodic biofilms, consequently enhancing the nitrate removal efficiency decreasing total nitrogen levels and causing a negligible accumulation of NO2- in the supernatant. Genomic analysis revealed that K. variicola C1 possessed a complete DNRA pathway and largely annotated electron shuttles. The up-regulated expression of genes narG and nirB, encoding nitrite oxidoreductase and nitrite reductase respectively, was closely associated with increased extracellular electron transfer (EET). High-throughput sequencing analysis was employed to investigate the impact of bioelectricity on microbial community composition within cathodic biofilms. Results indicated that Halomonas, Marinobacter and Prolixibacteraceae were enriched at the cathode electrodes. In conclusion, the integration of a DNRA strain with MFC facilitated the efficient removal of wastewater containing high concentrations of NO3- and enabled the environmentally friendly recovery of NH4+.


Assuntos
Compostos de Amônio , Fontes de Energia Bioelétrica , Biofilmes , Eletrodos , Nitratos , Fontes de Energia Bioelétrica/microbiologia , Nitratos/metabolismo , Compostos de Amônio/metabolismo , Klebsiella/metabolismo , Klebsiella/genética , Águas Residuárias/microbiologia , Microbiota/fisiologia , Oxirredução , Eletricidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA