Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Life (Basel) ; 14(2)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38398744

RESUMO

This study aimed to investigate the morphological characteristics of fruits and seeds from Diptychocarpus strictus, a plant species inhabiting the cold desert pastoral area of China. Furthermore, this study sought to evaluate the germination potential of these seeds following digestion by sheep. This study employed the sheep rumen fistula method to simulate rumen digestion at various time intervals. Subsequently, an in vitro simulation method was utilized to simulate true gastric and intestinal digestion after rumen digestion. Paper germination tests were then conducted to assess the impact of the digestive process on the heteromorphic seed morphology and germination. During rumen digestion, the seeds were protected by wide wings. The results revealed a highly significant negative correlation (p < 0.01) between seed wing length and digestion time. Post-rumen digestion, variations in the germination rate among seeds from fruits at different locations were observed. Indicators, such as germination rate, exhibited a highly significant negative correlation with rumen digestion time (p < 0.01). In vitro simulated digestion tests demonstrated that Diptychocarpus strictus seeds retained their ability to germinate even after complete digestion within the livestock's digestive tract. The polymorphic nature of Diptychocarpus strictus seeds, coupled with their capacity to survive and germinate through the digestive tract, facilitates the spread of these seeds. This finding has implications for mitigating desert grassland degradation and promoting sustainable ecological development.

2.
Plants (Basel) ; 12(16)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37631178

RESUMO

BACKGROUND: Sainfoin is a forage legume that is widely distributed around the world and is beneficial for animals owing to the characteristics of its condensed tannins (CTs), which, from certain plants, can prolong the aerobic stability of silage. METHODS: The present study investigated whether sainfoin CTs can prolong aerobic stability by adding polyethylene glycol (PEG) to inactivate CT activity in the silage system. RESULTS: The results showed that aerobic stability increased under the PEG treatment (p < 0.05). Ammonia nitrogen (0.71 g/kg DM vs. 0.94 g/kg DM; p < 0.05) was higher in the PEG-treated group compared with the control after 3 d of aerobic exposure. BA was detected only in the PEG-treated group upon aerobic exposure. Yeasts were more abundant in the control compared with the PEG-treated group after 7 d of aerobic exposure, after which the relative abundance of Lactobacillus was lower in the PEG-treated group (65.01% vs. 75.01% in the control; p < 0.05), while the relative abundance of Pediococcus was higher in the PEG-treated group compared with the control (10.9% vs. 4.49%, respectively; p < 0.05).The relative abundances of Apiotrichum and Aspergillus were lower in the control than in the PEG-treated group after 7 d of aerobic exposure. CONCLUSIONS: The results suggested that sainfoin CTs decreased aerobic stability, but could inhibit certain bacteria and fungi, such as Pediococcus and Apiotrichum, and preserve the protein content during the aerobic exposure of silage.

3.
Sci Rep ; 13(1): 13747, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612457

RESUMO

Planting alfalfa in grey desert soil can have significant effects on soil nutrient levels, microbial communities, and overall soil improvement. High-throughput sequencing technology was used to explore the relationship between the rhizosphere microbial community structure of grey desert soil planted with different alfalfa varieties (Aohan, WL525HQ, Knight2, Kangsai, Victoria, and WL712), alfalfa characteristics and rhizosphere soil physicochemical properties. Alfalfa planting increased the nitrogen and organic matter in the grey desert soil, and the effects in Victoria, Kangsai, and Aohan were relatively better than those in the unplanted areas and other alfalfa areas. The Chao1 and Shannon indexes showed that the diversity and relative abundance of bacteria and fungi in Kangsai were significantly higher than those in the unplanted areas and other alfalfa areas. Redundancy analysis showed that available nitrogen and phosphorus, as well as fresh weight, significantly affected the changes in fungal and bacterial communities. Variance partitioning analysis showed that soil and alfalfa growth characteristics explained 50.04% and 51.58% of the structural changes in the bacteria and fungi, respectively. Therefore, planting alfalfa changed the community structure of bacteria and fungi, as well as the content of soil nutrients, and different varieties of alfalfa had different effects on soil improvement.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Medicago sativa , Análise de Variância , Nitrogênio , Solo
4.
Front Plant Sci ; 14: 1124664, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968423

RESUMO

Nitrogen (N) and phosphorus (P) fertilization significantly affect alfalfa production and chemical composition; however, the effect of combined N and P application on protein fractions and the nonstructural carbohydrate content of alfalfa is not fully understood. This two-year study investigated the effects of N and P fertilization on the protein fractions, nonstructural carbohydrates (NSC), and alfalfa hay yield. Field experiments were carried out using two nitrogen application rates (N60, 60 and N120, 120 kg N ha - 1) and four phosphorus application rates (P0, 0; P50, 50; P100, 100; and P150, 150 kg P ha - 1), total 8 treatment (N60P0, N60P50, N60P100, N60P150, N120P0, N120P50, N120P100 and N120P150). Alfalfa seeds were sown in the spring of 2019, uniformly managed for alfalfa establishment, and tested in the spring of 2021-2022. Results indicated that P fertilization significantly increased the hay yield (3.07-13.43% ranges), crude protein (6.79-9.54%), non-protein nitrogen of crude protein (fraction A) (4.09-6.40%), and NSC content (11.00-19.40%) of alfalfa under the same treatment of N application (p < 0.05), whereas non-degradable protein (fraction C) decreased significantly (6.85-13.30%, p < 0.05). Moreover, increasing N application resulted in a linear increase the content of non-protein N (NPN) (4.56-14.09%), soluble protein (SOLP) (3.48-9.70%), and neutral detergent-insoluble protein (NDIP) (2.75-5.89%) (p < 0.05), whereas acid detergent-insoluble protein (ADIP) content was significantly decreased (0.56-5.06%, p < 0.05). The regression equations for nitrogen and phosphorus application indicated a quadratic relationship between yield and forage nutritive values. Meanwhile, the comprehensive evaluation scores of NSC, nitrogen distribution, protein fractions, and hay yield by principal component analysis (PCA) revealed that the N120P100 treatment had the highest score. Overall, 120 kg N ha - 1 coupled with 100 kg P ha - 1 (N120P100) promoted the growth and development of perennial alfalfa, increased soluble nitrogen compounds and total carbohydrate content, and reduced protein degradation, thus improving the alfalfa hay yield and nutritional quality.

5.
Front Microbiol ; 13: 1063914, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36483209

RESUMO

The present study investigated the dynamic profiles of fermentation quality, aerobic stability, and the bacterial community of paper mulberry silage inoculants without (Control) or with Lactiplantibacillus plantarum (LP), Lactiplantibacillus brevis (LB), or their combination (LPLB), which was screened from naturally fermented paper mulberry. The results showed that the inoculated treatments had significantly reduced neutral detergent fiber, water-soluble carbohydrates, and ammoniacal nitrogen contents compared with the control after 60 days of ensiling (the decreased proportion of LP, LB, and LPLB treatments ranged from 7.33%-11.23%, 9.60%-21.44%, and 21.53%-29.23%, respectively, p < 0.05). The pH value of the LP and LB treatments was significantly lower than that of the control after 60 days of ensiling (4.42 and 4.56 vs. 4.71, p < 0.05). The LP treatment promoted lactic acid accumulation and LAB number compared with the control (66.59% vs. 54.12% and 8.71 log10 CFU/g vs. 8.52 log10 CFU/g, respectively, p < 0.05), and the LB and LPLB treatments inhibited the growth of yeast and mold after 14 days of fermentation. After 5 days of aerobic exposure, both the LB and LPLB treatments increased the aerobic stability time and acetic acid content (from 29 to 75 h and 16.14%-48.72%, respectively, p < 0.05), inhibited the growth of yeast and mold, and did not detect butyric acid. Additionally, the bacteria community of each treatment was dominated by Aerococcus on day 3 of ensilage (accounting for 54.36%-69.31%), while the inoculated treatments reduced the abundance of Aerococcus on day 60 (from 59.73% to 85.16%, p < 0.05), and Lactobacillus became the dominant genus (accounting for 54.57%-70.89%). Inoculation of L. plantarum effectively maintained the acidic environment at the end of the fermentation system by maintaining the abundance of Lactobacillus, maximizing the preservation of dry matter and protein, and reducing protein corruption. Inoculation of L. brevis alone or in combination with L. plantarum significantly inhibited the growth of mold and improved the aerobic stability of paper mulberry silage.

6.
PeerJ ; 10: e14096, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248707

RESUMO

Background: Alfalfa (Medicago sativa L.) is a kind of forage with high relative feeding value in farming and livestock breeding, and is of great significance to the development of animal husbandry. The growth of the aboveground part of alfalfa is an important factor that limits crop yield. Clarifying the molecular mechanisms that maintain vigorous growth in alfalfa may contribute to the development of molecular breeding for this crop. Methods: Here, we evaluated the growth phenotypes of five cultivars of alfalfa (WL 712, WL 525HQ, Victoria, Knight 2, and Aohan). Then RNA-seq was performed on the stems of WL 712, chosen as a fast growing cultivar, and Aohan, chosen as a slow growing cultivar. GO enrichment analysis was conducted on all differentially expressed genes (DEGs). Result: Among the differentially expressed genes that were up-regulated in the fast growing cultivar, GO analysis revealed enrichment in the following seven categories: formation of water-conducting tissue in vascular plants, biosynthesis and degradation of lignin, formation of the primary or secondary cell wall, cell enlargement and plant growth, cell division and shoot initiation, stem growth and induced germination, and cell elongation. KEGG analysis showed that differentially expressed genes were annotated as being involved in plant hormone signal transduction, photosynthesis, and phenylpropanoid biosynthesis. KEGG analysis also showed that up-regulated in the fast growing cultivar were members of the WRKY family of transcription factors related to plant growth and development, members of the NAC and MYB gene families related to the synthesis of cellulose and hemicellulose, and the development of secondary cell wall fibres, and finally, MYB family members that are involved in plant growth regulation. Our research results not only enrich the transcriptome database of alfalfa, but also provide valuable information for explaining the molecular mechanism of fast growth, and can provide reference for the production of alfalfa.


Assuntos
Medicago sativa , Melhoramento Vegetal , Animais , Medicago sativa/genética , RNA-Seq , Transcriptoma/genética , Fotossíntese
7.
Front Microbiol ; 13: 976118, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060786

RESUMO

Condensed tannins (CT) from sainfoin have a high capacity to inhibit proteolysis. A previous study reported that CT from sainfoin can inhibit lactic acid bacteria activity and decrease ammonium-nitrogen (N) content during sainfoin ensiling; however, no study has focused on the metabolome of ensiled sainfoin. The objective of the present study was to investigate the effects of CT [following supplementation of deactivated CT with polyethylene glycol (PEG)] on protease activity, keystone bacteria, and metabolome during sainfoin ensiling. According to the results, PEG amendment increased non-protein N, amino acid, and soluble protein contents significantly (in the 49.08-59.41, 116.01-64.22, and 23.5-41.94% ranges, respectively, p < 0.05) during ensiling, whereas neutral detergent-insoluble protein and acid detergent-insoluble protein were decreased significantly (in the 55.98-64.71 and 36.58-57.55% ranges, respectively, p < 0.05). PEG supplementation increased aminopeptidase and acid protease activity after 3 days of ensiling (p < 0.05) and increased carboxypeptidase activity during the entire ensiling process (p < 0.05). The keystone bacteria changed following PEG addition (Stenotrophomonas, Pantoea, and Cellulosimicrobium in the control vs. Microbacterium, Enterococcus, and Brevundimonas in the PEG-treated group). In total, 510 metabolites were identified after 60 days of sainfoin ensiling, with 33 metabolites annotated in the Kyoto Encyclopedia of Genes and Genomes database. Among the metabolites, phospholipids were the most abundant (72.7% of 33 metabolites). In addition, 10 upregulated and 23 downregulated metabolites were identified in the PEG-treated group when compared with the control group, after 60 days of ensiling (p < 0.05). Pediococcus (correlated with 20 metabolites, R 2 > 0.88, p < 0.05) and Lactobacillus (correlated with 16 metabolites, R 2 > 0.88, p < 0.05) were the bacteria most correlated with metabolites. The results suggested antagonistic effects between Lactobacillus and Pediococcus during ensiling. The decreased proteolysis during sainfoin ensiling was mainly attributed to the inhibition of protease activity by CT, particularly carboxypeptidase activity. In addition, proteolysis decreased partly due to CT inhibiting Pediococcus activity during ensiling, with Pediococcus being significantly and positively correlated with dopamine after 60 days of ensiling (R 2 = 0.8857, p < 0.05).

8.
Nanomaterials (Basel) ; 12(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36144984

RESUMO

Cathode materials of energy storage batteries have attracted extensive attention because of the importance in deciding the rate performance and long cycle property of batteries. Herein, we report a simple and environmentally friendly solvothermal method to prepare Zn-doped VO2(B) cathode materials. The introduction of zinc ions can effectively regulate the lattice structure, surface morphology and internal defect state of Zn-VO2(B) nano materials. The sample with Zn content x = 1.5% has smaller cell volume and grain size, and higher concentration of vacancy defects. These microstructures ensure the structural stability during ion embedding process and, thus, this sample shows excellent electrochemical performances. The capacitance retention rate still maintains 88% after 1000 cycles at the current density of 0.1 A·g-1. The enhanced performances of Zn-doped VO2(B) samples may lay a foundation for the improvement of electrochemical performances of VO2(B) cathode materials for energy storage batteries in the future.

9.
Angew Chem Int Ed Engl ; 60(50): 26072-26079, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34545677

RESUMO

A bis(pyridyl)amine-bipyridine-iron(II) framework (Fe(BPAbipy)) of complexes 1-3 is reported to shed light on the multistep nature of CO2 reduction. Herein, photocatalytic conversion of CO2 to CO even at low CO2 concentration (1 %), together with detailed mechanistic study and DFT calculations, reveal that 1 first undergoes two sequential one-electron transfer affording an intermediate with electron density on both Fe and ligand for CO2 binding over proton. The following 2 H+ -assisted Fe-CO formation is rate-determining for selective CO2 -to-CO reduction. A pendant, proton-shuttling α-OH group (2) initiates PCET for predominant H2 evolution, while an α-OMe group (3) cancels the selectivity control for either CO or H2 . The near-unity selectivity of 1 and 2 enables self-sorting syngas production at flexible CO/H2 ratios. The unprecedented results from one kind of molecular catalyst skeleton encourage insight into the beauty of advanced multi-electron and multi-proton transfer processes for robust CO2 RR by photocatalysis.

10.
Angew Chem Int Ed Engl ; 60(21): 11779-11783, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33660909

RESUMO

Direct allylic C-H thiolation is straightforward for allylic C(sp3 )-S bond formation. However, strong interactions between thiol and transition metal catalysts lead to deactivation of the catalytic cycle or oxidation of sulfur atom under oxidative condition. Thus, direct allylic C(sp3 )-H thiolation has proved difficult. Represented herein is an exceptional for direct, efficient, atom- and step-economic thiolation of allylic C(sp3 )-H and thiol S-H under visible light irradiation. Radical trapping experiments and electron paramagnetic resonance (EPR) spectroscopy identified the allylic radical and thiyl radical generated on the surface of photocatalyst quantum dots (QDs). The C-S bond formation does not require external oxidants and radical initiators, and hydrogen (H2 ) is produced as byproduct. When vinylic C(sp2 )-H was used instead of allylic C(sp3 )-H bond, the radical-radical cross-coupling of C(sp2 )-H and S-H was achieved with liberation of H2 . Such a unique transformation opens up a door toward direct C-H and S-H coupling for valuable organosulfur chemistry.

11.
Angew Chem Int Ed Engl ; 59(42): 18400-18404, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-32667116

RESUMO

Inspired by the natural [NiFe]-H2 ase, we designed mimic 1, (dppe)Ni(µ-pdt)(µ-Cl)Ru(CO)2 Cl to realize effective H2 evolution under photocatalytic conditions. However, a new species 2 was captured in the course of photo-, electro-, and chemo- one-electron reduction. Experimental studies of in situ IR spectroscopy, EPR, NMR, X-ray absorption spectroscopy, and DFT calculations corroborated a dimeric structure of 2 as a closed-shell, symmetric structure with a RuI center. The isolated dimer 2 showed the real catalytic role in photocatalysis with a benchmark turnover frequency (TOF) of 1936 h-1 for H2 evolution, while mimic 1 worked as a pre-catalyst and evolved H2 only after being reduced to 2. The remarkably catalytic activity and unique dimer structure of 2 operated in photocatalysis unveiled a broad research prospect in hydrogenases mimics for advanced H2 evolution.

12.
Chem Commun (Camb) ; 56(55): 7649-7652, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32520013

RESUMO

Here, we demonstrate, for the first time, that Co-MoO3-x nanocrystals (NCs) have been synthesized with the assistance of supercritical CO2. Their unique structural features of transition-metal doping and high oxygen vacancy concentrations, lead to synchronous outstanding surface enhanced Raman scattering (SERS) detection and photothermal conversion performances.

13.
Chem Commun (Camb) ; 55(83): 12527-12530, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31576838

RESUMO

Amorphous MoO3-x with enhanced LSPR has been fabricated successfully by introducing Mo atoms into the interlayers of MoO3 nanosheets via a hydrothermal method. The inserted Mo atom could bond with inherent Mo atoms and further form a distorted atomic configuration structure. Thus, the amorphous MoO3-x possesses a relatively excellent photothermal conversion efficiency of 61.79%.

14.
Chem Commun (Camb) ; 55(66): 9777-9780, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31298668

RESUMO

Quasi-metallic NixMoO3 nanodots with an enhanced localized surface plasmon resonance in the visible and NIR regions have been successfully fabricated. DFT calculations reveal the metallic nature of NixMoO3 nanodots. Thus, they exhibit an excellent photothermal conversion efficiency of 87.4%, and have a high water evaporation rate of 2.13 kg m-2 h-1.

15.
Biomed Res Int ; 2019: 4361358, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30906772

RESUMO

This study aimed to investigate the effects of the combined use of cellulose-decomposing bacteria (CDB) and heterolactic lactic acid bacteria (LAB) on corn silage fermentation. Fresh maize was treated with heterolactic LAB or CDB combined with heterolactic LAB inoculants or without any treatment. Chemical and microbiological analyses were conducted at specific times after ensiling. A comprehensive value evaluation was conducted using the principal component analysis model. Although all treatments significantly affected the microorganism numbers during fermentation, the numbers of aerobic bacteria, LAB, yeast, and molds in the groups with combined CDB and LAB were significantly higher than those in the group with LAB only (P < 0.05). All treatments regulated the silage CO2 production. Each treatment had different effects on the nutrient degradation rate. Based on a comprehensive evaluation, the CDB and heterolactic LAB combination had the best effect on the ensiling process in improving the quality and feed value of corn silage.


Assuntos
Celulose/metabolismo , Lactobacillus/crescimento & desenvolvimento , Silagem/microbiologia , Zea mays/microbiologia
16.
Small ; 14(28): e1801523, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29882238

RESUMO

Surface-enhanced Raman spectroscopy (SERS) based on plasmonic semiconductive material has been proved to be an efficient tool to detect trace of substances, while the relatively weak plasmon resonance compared with noble metal materials restricts its practical application. Herein, for the first time a facile method to fabricate amorphous Hx MoO3 quantum dots with tunable plasmon resonance is developed by a controlled oxidization route. The as-prepared amorphous Hx MoO3 quantum dots show tunable plasmon resonance in the region of visible and near-infrared light. Moreover, the tunability induced by SC CO2 is analyzed by a molecule kinetic theory combined with a molecular thermodynamic model. More importantly, the ultrahigh enhancement factor of amorphous Hx MoO3 quantum dots detecting on methyl blue can be up to 9.5 × 105 with expending the limit of detection to 10-9 m. Such a remarkable porperty can also be found in this Hx MoO3 -based sensor with Rh6G and RhB as probe molecules, suggesting that the amorphous Hx MoO3 quantum dot is an efficient candidate for SERS on molecule detection in high precision.

17.
J Colloid Interface Sci ; 525: 152-160, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29702321

RESUMO

The conventional stirring method cannot be employed for chip-on-lab reactions such as microfluidic and microdroplet reactions as well as nanoscale reactions. Therefore, it is necessary to design a nanoscale magnetic stirrer with a high magnetic response towards the external magnetic field. In this work, one dimentional core@shell structured Fe-Fe2O3@poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol) magnetic nanochains modified by nickel hydroxide (denoted as Fe-Fe2O3@PZS@Ni(OH)2 NCs) as nanoscale magnetic stirrer and recyclable self-mixing nanocatalysts are successfully prepared through three steps: synthesis of Fe-Fe2O3 nanochains (NCs) with high saturation magnetization, coating with poly (cyclotriphosphazene-co-4,4'-sulfonyldiphenol) (PZS), and nickel hydroxide's anchoring on the surface of Fe-Fe2O3@PZS NCs. The cross-linked polymer PZS is used to protect Fe-Fe2O3 NCs from chemical corrosion and as a platform for subsequent immobilization of nickel hydroxide. Characterization results show that the Fe-Fe2O3@PZS@Ni(OH)2 NCs own chainlike structure and high saturation magnetization of 103 emu g-1 at room temperature, exhibiting high magnetic response to the external rotating magnetic field. In the macro-reaction system for 4-nitrophenol (4-NP) reduction, the as-prepared Fe-Fe2O3@PZS@Ni(OH)2 NCs show an apparent rate constant of about 0.60 min-1. Furthermore, the Fe-Fe2O3@PZS@Ni(OH)2 catalyst is reused ten times while no obvious loss of catalytic activity was observed. In the micro-reaction system, the Fe-Fe2O3@PZS@Ni(OH)2 NCs also display good magnetic response and favorable catalytic activity for the hydrogenation of methylene blue. These results indicate that the bifunctional Fe-Fe2O3@PZS@Ni(OH)2 NCs with high saturation magnetization have great potential as excellent nanocatalysts and as promising nanoscale magnetic stirrers.

18.
Sci Rep ; 6: 29851, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27417065

RESUMO

Achieving highly efficient hydrogen (H2) evolution via artificial photosynthesis is a great ambition pursued by scientists in recent decades because H2 has high specific enthalpy of combustion and benign combustion product. [FeFe]-Hydrogenase ([FeFe]-H2ase) mimics have been demonstrated to be promising catalysts for H2 photoproduction. However, the efficient photocatalytic H2 generation system, consisting of PAA-g-Fe2S2, CdSe QDs and H2A, suffered from low stability, probably due to the hole accumulation induced photooxidation of CdSe QDs and the subsequent crash of [FeFe]-H2ase mimics. In this work, we take advantage of supramolecular interaction for the first time to construct the secondary coordination sphere of electron donors (HA(-)) to CdSe QDs. The generated secondary coordination sphere helps realize much faster hole removal with a ~30-fold increase, thus leading to higher stability and activity for H2 evolution. The unique photocatalytic H2 evolution system features a great increase of turnover number to 83600, which is the highest one obtained so far for photocatalytic H2 production by using [FeFe]-H2ase mimics as catalysts.

19.
Anal Chim Acta ; 911: 114-120, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26893093

RESUMO

A BODIPY-based ratiometric fluorescent probe for HOCl has been designed based on the transduction of thioether to sulfoxide function. This probe features a marked absorption and emission blue-shift upon the HOCl-promoted rapid transduction, enabling the highly selective and ratiometric detection. In addition, the probe works excellently within a wide pH range of 4-10, addressing the existing pH dependency issue. Living cells studies demonstrate that the probe is cell membrane permeable and can be employed successfully to image endogenous HOCl generation in macrophage cells.


Assuntos
Compostos de Boro/química , Corantes Fluorescentes/química , Ácido Hipocloroso/análise , Animais , Linhagem Celular , Concentração de Íons de Hidrogênio , Macrófagos/metabolismo , Camundongos , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Análise Espectral/métodos
20.
Zhongguo Zhen Jiu ; 36(12): 1247-1251, 2016 Dec 12.
Artigo em Chinês | MEDLINE | ID: mdl-29231360

RESUMO

OBJECTIVE: To compare the clinical efficacy differences among acupuncture combined with western medicine, acupuncture alone and western medicine alone for chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). METHODS: Ninety patients were randomly assigned into a needle-medicine group, an acupuncture group and a western medicine group, 30 patients in each group. The patients in the needle-medicine group were treated with acupuncture combined with western medicine; the scalp points included Shenting (GV 24), Xinhui (GV 22), Qianding (GV 21), Baihui (GV 20), Chengguang (BL 6), Tongtian (BL 7), etc. The body points were Zhongji (CV 3), Guanyuan (CV 4), Pangguangshu (BL 28), Ciliao (BL 32), etc. The acupuncture was given 30 min per treatment, once a day. Besides, oral administration of 0.2g levofloxacin (twice per day) and 0.2 mg tamsulosin (once a day) was applied. The patients in the acupuncture group and western medicine group were treated by acupuncture and western medicine respectively. 12-d treatment was taken as one session, and totally 2 sessions were given. The clinical efficacy of the three groups after treatment was compared as well as the National Institutes of Health-Chronic Prostatitis Symptom Index (NIH-CPSI) total score and pain score, self-rating anxiety scale (SAS) and self-rating depression scale (SDS) before and after treatment. RESULTS: During the trial two patients dropped out, as a result, 30 patients in the needle-medicine group, 29 patients in the acupuncture group and 29 patients in the western medicine group were included in the analysis. After treatment, 21 patients were cured, 6 patients were markedly effective, 2 patients were effective and 1 patient failed in the needle-medicine group;12 patients were cured, 10 patients were markedly effective, 5 patients were effective and 2 patients failed in the acupuncture group; 11 patients were cured, 12 patients were markedly effective, 4 patients were effective and 2 patients failed in the medicine group; the efficacy in the needle-medicine group was superior to those in the acupuncture group and medicine group (both P<0.05). Each score was improved after treatment in each group (all P<0.01); the total score of NIH-CPSI as well as SAS and SDS scores in the needle-medicine group were superior to those in the acupuncture group and medicine group (P<0.05, P<0.01); the pain scores of NIH-CPSI in needle-medicine group and acupuncture group were superior to that in the medicine group (P<0.05, P<0.01), but the difference between the needle-medicine group and acupuncture group was not significant (P>0.05). CONCLUSIONS: The efficacy of acupuncture combined with western medicine for CP/CPPS is superior to that of acupuncture alone and western medicine alone, which could improve the symptom of prostatitis as well as status of anxiety and depression.


Assuntos
Terapia por Acupuntura , Dor Crônica/terapia , Dor Pélvica/terapia , Prostatite/terapia , Agentes Urológicos/administração & dosagem , Pontos de Acupuntura , Doença Crônica , Terapia Combinada/métodos , Humanos , Levofloxacino/administração & dosagem , Masculino , Sulfonamidas/administração & dosagem , Tansulosina , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA