Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Clin Nutr ; 43(9): 2198-2210, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39163761

RESUMO

Perioperative neurocognitive dysfunction (PND) occurs in elderly individuals undergoing anesthesia and surgery. To explore the potential molecular mechanisms, we performed right-sided cervical exploratory surgery under sevoflurane anesthesia in 18-month-old male Sprague-Dawley rats. Anxiety-depression-like behaviors and learning memory abilities were assessed using the Open Field Test (OFT) and Novel Object Recognition (NOR). Additionally, the hippocampus was collected one day after surgery for inflammatory factor detection, TUNEL staining, and metabolomics analysis. Mendelian randomization (MR) analyses were subsequently conducted to validate the causal relationships by using a series of GWAS datasets related to representative differential metabolites as exposures and cognitive impairment as endpoints. The results indicated that rats exposed to anesthesia and surgery exhibited poorer cognitive performance, significant elevations in hippocampal inflammatory factors such as IL-1ß and TNF-α, and extensive neuronal apoptosis. LC-MS/MS-based untargeted metabolomics identified 19 up-regulated and 32 down-regulated metabolites in the test group, with 6 differential metabolites involved in metabolic pathways enriched according to the KEGG database. ROC analysis revealed a correlation between α-linolenic acid (ALA) and linoleic acid (LA) and the development of PND. Further MR analysis confirmed that ALA was significantly associated with cognitive performance and the risk of depression, while LA was significantly associated with the risk of memory loss. Taken together, our results identified ALA and LA as potentially powerful biomarkers for PND.

2.
Neurosci Bull ; 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39153174

RESUMO

The primary intravenous anesthetics employed in clinical practice encompass dexmedetomidine (Dex), propofol, ketamine, etomidate, midazolam, and remimazolam. Apart from their established sedative, analgesic, and anxiolytic properties, an increasing body of research has uncovered neuroprotective effects of intravenous anesthetics in various animal and cellular models, as well as in clinical studies. However, there also exists conflicting evidence pointing to the potential neurotoxic effects of these intravenous anesthetics. The role of intravenous anesthetics for neuro on both sides of protection or toxicity has been rarely summarized. Considering the mentioned above, this work aims to offer a comprehensive understanding of the underlying mechanisms involved both in the central nerve system (CNS) and the peripheral nerve system (PNS) and provide valuable insights into the potential safety and risk associated with the clinical use of intravenous anesthetics.

3.
Angew Chem Int Ed Engl ; : e202412097, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136339

RESUMO

A sulfonated tris(1-phenylpyrazolato)iridium(III) complex ([Ir(sppz)3]3-) serves as a proof-of-concept non-emissive enhancer of the widely used ECL detection system of tris(2,2'-bipyridine)ruthenium(II) ([Ru(bpy)3]2+) with tri-n-propylamine (TPrA) co-reactant, acting through electrocatalysis of TPrA oxidation and efficient chemi-excitation of the luminophore. Using self-interference ECL spectroscopy, we show that the enhancer extends diffusion of the required electrogenerated precursors from the electrode surface. Previously reported enhancement through these pathways has been confounded by the inherent ECL of the enhancer, but the increase in [Ru(bpy)3]2+ ECL intensity using [Ir(sppz)3]3- was obtained without its concomitant emission. The most prominent enhancement (11-fold) occurred at low potentials associated with the 'indirect' co-reactant ECL pathway, which translated to between 2- and 6-fold enhancement when the luminophore was immobilised on microbeads as a general model for enhanced ECL assays.

4.
Chaos ; 34(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38953751

RESUMO

Cluster synchronization in synthetic networks of coupled chaotic oscillators is investigated. It is found that despite the asymmetric nature of the network structure, a subset of the oscillators can be synchronized as a cluster while the other oscillators remain desynchronized. Interestingly, with the increase in the coupling strength, the cluster is expanding gradually by recruiting the desynchronized oscillators one by one. This new synchronization phenomenon, which is named "scalable synchronization cluster," is explored theoretically by the method of eigenvector-based analysis, and it is revealed that the scalability of the cluster is attributed to the unique feature of the eigenvectors of the network coupling matrix. The transient dynamics of the cluster in response to random perturbations are also studied, and it is shown that in restoring to the synchronization state, oscillators inside the cluster are stabilized in sequence, illustrating again the hierarchy of the oscillators. The findings shed new light on the collective behaviors of networked chaotic oscillators and are helpful for the design of real-world networks where scalable synchronization clusters are concerned.

5.
CNS Neurosci Ther ; 30(6): e14794, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38867379

RESUMO

BACKGROUND: Radiation-induced brain injury is a neurological condition resulting from radiotherapy for malignant tumors, with its underlying pathogenesis still not fully understood. Current hypotheses suggest that immune cells, particularly the excessive activation of microglia in the central nervous system and the migration of peripheral immune cells into the brain, play a critical role in initiating and progressing the injury. This review aimed to summarize the latest advances in the cellular and molecular mechanisms and the therapeutic potential of microglia in radiation-induced brain injury. METHODS: This article critically examines recent developments in understanding the role of microglia activation in radiation-induced brain injury. It elucidates associated mechanisms and explores novel research pathways and therapeutic options for managing this condition. RESULTS: Post-irradiation, activated microglia release numerous inflammatory factors, exacerbating neuroinflammation and facilitating the onset and progression of radiation-induced damage. Therefore, controlling microglial activation and suppressing the secretion of related inflammatory factors is crucial for preventing radiation-induced brain injury. While microglial activation is a primary factor in neuroinflammation, the precise mechanisms by which radiation prompts this activation remain elusive. Multiple signaling pathways likely contribute to microglial activation and the progression of radiation-induced brain injury. CONCLUSIONS: The intricate microenvironment and molecular mechanisms associated with radiation-induced brain injury underscore the crucial roles of immune cells in its onset and progression. By investigating the interplay among microglia, neurons, astrocytes, and peripheral immune cells, potential strategies emerge to mitigate microglial activation, reduce the release of inflammatory agents, and impede the entry of peripheral immune cells into the brain.


Assuntos
Lesões Encefálicas , Microglia , Lesões por Radiação , Microglia/efeitos da radiação , Microglia/metabolismo , Animais , Humanos , Lesões por Radiação/metabolismo , Lesões por Radiação/terapia , Lesões Encefálicas/etiologia , Lesões Encefálicas/metabolismo , Doenças Neuroinflamatórias/etiologia
6.
Mol Neurobiol ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829513

RESUMO

Approximately one-third of postoperative patients are troubled by postoperative pain. Effective treatments are still lacking. The aim of this study is to investigate the role of brain-derived neurotrophic factor (BDNF)-VGF (non-acronymic) in dorsal root ganglia (DRG) in postoperative pain. Pain behaviors were assessed through measurements of paw withdrawal threshold (PWT) and paw withdrawal latency (PWL). Transcriptome analysis was conducted to identify potential targets associated with postoperative pain. Western blotting, immunofluorescence, and ELISA were employed to further detect macrophage activation as well as the expression of BDNF, VGF, TNF-α, IL-1ß, and IL-6. Results showed that plantar incision induced both mechanical and thermal hyperalgesia. Transcriptome analysis suggested that plantar incision caused upregulation of BDNF and VGF. The expressions of BDNF and VGF were upregulated in isolectin B4-positive (IB4+) and calcitonin gene-related peptide-positive (CGRP+) neurons, rather than neurofilament 200-positive (NF200+) neurons. The activation of BDNF-VGF pathway upregulated expression of IL-6, TNF-α, and IL-1ß and promoted the activation of macrophages. In conclusion, BDNF-VGF pathway aggravates acute postoperative pain by promoting macrophage activation and pro-inflammatory cytokine production, which may provide a new target for the treatment of postoperative pain.

7.
Adv Sci (Weinh) ; 11(31): e2405426, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38881503

RESUMO

Base editors (BEs) are a recent generation of genome editing tools that couple a cytidine or adenosine deaminase activity to a catalytically impaired Cas9 moiety (nCas9) to enable specific base conversions at the targeted genomic loci. Given their strong application potential, BEs are under active developments toward greater levels of efficiency and safety. Here, a previously overlooked nCas9-centric strategy is explored for enhancement of BE. Based on a cytosine BE (CBE), 20 point mutations associated with nCas9-target interaction are tested. Subsequently, from the initial positive X-to-arginine hits, combinatorial modifications are applied to establish further enhanced CBE variants (1.1-1.3). Parallel nCas9 modifications in other versions of CBEs including A3A-Y130F-BE4max, YEE-BE4max, CGBE, and split-AncBE4max, as well as in the context of two adenine BEs (ABE), likewise enhance their respective activities. The same strategy also substantially improves the efficiencies of high-fidelity nCas9/BEs. Further evidence confirms that the stabilization of nCas9-substrate interactions underlies the enhanced BE activities. In support of their translational potential, the engineered CBE and ABE variants respectively enable 82% and 25% higher rates of editing than the controls in primary human T-cells. This study thus demonstrates a highly adaptable strategy for enhancing BE, and for optimizing other forms of Cas9-derived tools.


Assuntos
Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Edição de Genes , Edição de Genes/métodos , Humanos , Sistemas CRISPR-Cas/genética , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Células HEK293
8.
Anal Chem ; 96(26): 10630-10638, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38912708

RESUMO

Paper-based lateral flow immunoassays (LFIAs) are cost-effective, portable, and simple methods for detection of diverse analytes, which however only provide qualitative or semiquantitative results and lack sufficient sensitivity. A combination of LFIA and electrochemical detection, namely, electrochemical lateral flow immunoassay (eLFIA), enables quantitative detection of analytes with high sensitivity, but the integration of external electrodes makes the system relatively expensive and unstable. Herein, the working, counter, and reference electrodes were prepared directly on the nitrocellulose membrane using screen printing, which remarkably simplified the structure of eLFIA and decreased the cost. Moreover, a horseradish peroxidase (HRP)-based electrochemical signal amplification strategy was used for further increasing the analytical sensitivity. HRP captured on the working electrode can catalyze the oxidation of tetramethylbenzidine (TMB) to form the TMB-TMBox precipitate on the electrode surface, which as an electrochemically active product can output an amplified current for quantification. We demonstrated that the eLFIA could detect low-abundant inflammatory biomarkers in human plasma samples with limits of detection of 0.17 and 0.54 pg mL-1 for interleukin-6 and C-reactive protein, respectively. Finally, a fully portable system was fabricated by integrating eLFIA with a flexible and wireless electrochemical workstation, realizing the point-of-care detection of interleukin-6.


Assuntos
Biomarcadores , Proteína C-Reativa , Técnicas Eletroquímicas , Eletrodos , Interleucina-6 , Humanos , Imunoensaio/métodos , Imunoensaio/instrumentação , Técnicas Eletroquímicas/instrumentação , Biomarcadores/sangue , Biomarcadores/análise , Interleucina-6/sangue , Interleucina-6/análise , Proteína C-Reativa/análise , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Limite de Detecção , Inflamação/sangue , Inflamação/diagnóstico , Benzidinas
9.
Mol Cell Biochem ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717685

RESUMO

Despite enormous advances in the treatment of cardiovascular diseases, including I/R injury and heart failure, heart diseases remain a leading cause of mortality worldwide. Inositol-requiring enzyme 1 (IRE1) is an evolutionarily conserved sensor endoplasmic reticulum (ER) transmembrane protein that senses ER stress. It manages ER stress induced by the accumulation of unfolded/misfolded proteins via the unfolded protein response (UPR). However, if the stress still persists, the UPR pathways are activated and induce cell death. Emerging evidence shows that, beyond the UPR, IRE1 participates in the progression of cardiovascular diseases by regulating inflammation levels, immunity, and lipid metabolism. Here, we summarize the recent findings and discuss the potential therapeutic effects of IRE1 in the treatment of cardiovascular diseases.

10.
Oncologist ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821532

RESUMO

Epidermal growth factor receptor kinase domain duplication (EGFR-KDD) is a rare, recurrent oncogenic variant that constitutively activates EGFR in non-small-cell lung cancer. Herein, we report the case of a 70-year-old man with resectable colorectal adenocarcinoma who underwent surgery followed by adjuvant therapy. He relapsed with multiple liver metastases and received standard chemotherapy until his disease became refractory. Comprehensive genomic profiling of his postoperative colorectal cancer tissue revealed EGFR-KDD. He was treated with an EGFR tyrosine kinase inhibitor (TKI), afatinib and achieved a partial response (- 55%) after 8 weeks; however, he developed massive malignant ascites after 13 weeks. Osimertinib, another EGFR-TKI, controlled his tumors for 9 months. Patient-derived cancer organoids from his malignant ascites confirmed sensitivity to EGFR-TKIs. The findings suggest that EGFR-TKIs can be a potential treatment option for this molecular subgroup.

11.
Ecol Lett ; 27(4): e14403, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38577961

RESUMO

Species interactions such as facilitation and competition play a crucial role in driving species range shifts. However, density dependence as a key feature of these processes has received little attention in both empirical and modelling studies. Herein, we used a novel, individual-based treeline model informed by rich in situ observations to quantify the contribution of density-dependent species interactions to alpine treeline dynamics, an iconic biome boundary recognized as an indicator of global warming. We found that competition and facilitation dominate in dense versus sparse vegetation scenarios respectively. The optimal balance between these two effects was identified at an intermediate vegetation thickness where the treeline elevation was the highest. Furthermore, treeline shift rates decreased sharply with vegetation thickness and the associated transition from positive to negative species interactions. We thus postulate that vegetation density must be considered when modelling species range dynamics to avoid inadequate predictions of its responses to climate warming.


Assuntos
Ecossistema , Árvores , Árvores/fisiologia , Aquecimento Global , Mudança Climática , Clima
12.
Medicine (Baltimore) ; 103(8): e37191, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38394505

RESUMO

RATIONALE: Previous studies have found that the main treatment of sinus arrest is pacemaker treatment. It is rare to have 12 s of sinus arrest after radiofrequency ablation, and whether a permanent pacemaker is implanted immediately in this case is not described in the guidelines. PATIENT CONCERNS: A 76-year-old male patient with persistent atrial fibrillation (AF) developed sinus arrest lasting 12 s in the early morning of the fourth day after using radiofrequency ablation for pulmonary vein isolation. DIAGNOSIS: The patient was diagnosed with AF and sinus arrest. INTERVENTIONS: The patient received cardiopulmonary resuscitation, intravenous injection of atropine 1 mg, and intravenous infusion of isoproterenol 1mg and immediately recovered consciousness thereafter. Approximately, 1.5 h later, the patient underwent surgery to install a temporary pacemaker in the right femoral vein. OUTCOMES: The patient had repeated episodes of sinus arrest after the implantation of a temporary pacemaker. After 3 weeks, the patient stabilized and was discharged. The patient was followed up for 1 year and did not experience any recurrence of sinus arrest or AF. LESSONS: We consider the potential for postoperative myocardial edema, injury to the sinoatrial node during the procedure, propafenone poisoning, and autonomic dysfunction as contributors to the occurrence of sinus arrest after radiofrequency ablation. When sinus arrest occurs after radiofrequency ablation, we can choose the appropriate treatment according to the patient's condition.


Assuntos
Fibrilação Atrial , Cardiomiopatias , Ablação por Cateter , Doenças Genéticas Inatas , Parada Cardíaca , Átrios do Coração/anormalidades , Bloqueio Cardíaco , Ablação por Radiofrequência , Masculino , Humanos , Idoso , Resultado do Tratamento , Ablação por Cateter/efeitos adversos , Ablação por Cateter/métodos , Fibrilação Atrial/diagnóstico , Parada Cardíaca/cirurgia
13.
Analyst ; 149(5): 1496-1501, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38315553

RESUMO

Cathodic electrochemiluminescence (ECL) of a luminol (or its analogues)-dissolved oxygen (O2) system is an ideal alternative to ECL of the traditional luminol-hydrogen peroxide (H2O2) system, which can efficiently avoid the self-decomposition of H2O2 at room temperature. However, the mechanism for the generation of cathodic ECL by the luminol (or its analogues)-O2 system is still ambiguous. Herein, we report the study of cathodic ECL generation by the L012-O2 system at a glassy carbon electrode (GCE). The types of reactive oxygen species (ROS) involved generated during ECL reactions were verified. A possible reaction mechanism for the system was proposed and the rate constants of related reactions were estimated. Furthermore, several intermediates of L012 involved in the proposed pathways were validated by electrochemistry-coupled mass spectrometry. Finally, the cathodic ECL system was successfully used for measuring the antioxidant capacity of commercial juice with Trolox as a standard.


Assuntos
Antioxidantes , Técnicas Biossensoriais , Luminol/química , Peróxido de Hidrogênio/química , Medições Luminescentes/métodos , Eletrodos , Oxigênio/química , Técnicas Eletroquímicas , Limite de Detecção
14.
Planta ; 259(2): 47, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285274

RESUMO

MAIN CONCLUSION: Substantial advancements have been made in our comprehension of vegetative desiccation tolerance in resurrection plants, and further research is still warranted to elucidate the mechanisms governing distinct cellular adaptations. Resurrection plants are commonly referred to as a small group of extremophile vascular plants that exhibit vegetative desiccation tolerance (VDT), meaning that their vegetative tissues can survive extreme drought stress (> 90% water loss) and subsequently recover rapidly upon rehydration. In contrast to most vascular plants, which typically employ water-saving strategies to resist partial water loss and optimize water absorption and utilization to a limited extent under moderate drought stress, ultimately succumbing to cell death when confronted with severe and extreme drought conditions, resurrection plants have evolved unique mechanisms of VDT, enabling them to maintain viability even in the absence of water for extended periods, permitting them to rejuvenate without harm upon water contact. Understanding the mechanisms associated with VDT in resurrection plants holds the promise of expanding our understanding of how plants adapt to exceedingly arid environments, a phenomenon increasingly prevalent due to global warming. This review offers an updated and comprehensive overview of recent advances in VDT within resurrection plants, with particular emphasis on elucidating the metabolic and cellular adaptations during desiccation, including the intricate processes of cell wall folding and the prevention of cell death. Furthermore, this review highlights existing unanswered questions in the field, suggests potential avenues for further research to gain deeper insights into the remarkable VDT adaptations observed in resurrection plants, and highlights the potential application of VDT-derived techniques in crop breeding to enhance tolerance to extreme drought stress.


Assuntos
Craterostigma , Traqueófitas , Craterostigma/genética , Dessecação , Melhoramento Vegetal , Morte Celular , Água
15.
Environ Sci Ecotechnol ; 21: 100389, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38293646

RESUMO

The evasion of carbon dioxide (CO2) from lakes significantly influences the global carbon equilibrium. Amidst global climatic transformations, the role of Qingzang Plateau (QZP) lakes as carbon (C) sources or sinks remains a subject of debate. Furthermore, accurately quantifying their contribution to the global carbon budget presents a formidable challenge. Here, spanning half a century (1970-2020), we utilize a synthesis of literature and empirical field data to assess the CO2 exchange flux of QZP lakes. We find markedly higher CO2 exchange flux in the southeast lakes than that in the northern and western regions from 1970 to 2000. During this time, both freshwater and saltwater lakes served primarily as carbon sources. The annual CO2 exchange flux was estimated at 2.04 ± 0.37 Tg (Tg) C yr-1, mainly influenced by temperature fluctuations. The CO2 exchange flux patterns underwent a geographical inversion between 2000 and 2020, with increased levels in the west and decreased levels in the east. Notably, CO2 emissions from freshwater lakes diminished, and certain saltwater lakes in the QTP transitioned from carbon sources to sinks. From 2000 to 2020, the annual CO2 exchange flux from QZP lakes is estimated at 1.34 ± 0.50 Tg C yr-1, with solar radiation playing a more pronounced role in carbon emissions. Cumulatively, over the past five decades, QZP lakes have generally functioned as carbon sources. Nevertheless, the total annual CO2 emissions have declined since the year 2000, indicating a potential shift trend from being a carbon source to a sink, mirroring broader patterns of global climate change. These findings not only augment our understanding of the carbon cycle in plateau aquatic systems but also provide crucial data for refining China's carbon budget.

16.
Plant Physiol ; 194(4): 2387-2399, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38114094

RESUMO

There are many factors that affect the yield of Chinese chestnut (Castanea mollissima), with single nut weight (SNW) being one of the most important. Leaf length is also related to Chinese chestnut yield. However, the genetic architecture and gene function associated with Chinese chestnut nut yield have not been fully explored. In this study, we performed genotyping by sequencing 151 Chinese chestnut cultivars, followed by a genome-wide association study (GWAS) on six horticultural traits. First, we analyzed the phylogeny of the Chinese chestnut and found that the Chinese chestnut cultivars divided into two ecotypes, a northern and southern cultivar group. Differences between the cultivated populations were found in the pathways of plant growth and adaptation to the environment. In the selected regions, we also found interesting tandemly arrayed genes that may influence Chinese chestnut traits and environmental adaptability. To further investigate which horticultural traits were selected, we performed a GWAS using six horticultural traits from 151 cultivars. Forty-five loci that strongly associated with horticultural traits were identified, and six genes highly associated with these traits were screened. In addition, a candidate gene associated with SNW, APETALA2 (CmAP2), and another candidate gene associated with leaf length (LL), CRYPTOCHROME INTERACTING BASIC HELIX-LOOP-HELIX 1 (CmCIB1), were verified in Chinese chestnut and Arabidopsis (Arabidopsis thaliana). Our results showed that CmAP2 affected SNW by negatively regulating cell size. CmCIB1 regulated the elongation of new shoots and leaves by inducing cell elongation, potentially affecting photosynthesis. This study provided valuable information and insights for Chinese chestnut breeding research.


Assuntos
Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Genes de Plantas/genética , Folhas de Planta/genética , China
17.
ACS Cent Sci ; 9(12): 2315-2325, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38161361

RESUMO

The epigenetic modification 5-hydroxymethylcytosine (5hmC) plays a crucial role in the regulation of gene expression. Although some methods have been developed to detect 5hmC, direct genome-wide mapping of 5hmC at base resolution is still highly desirable. Herein, we proposed a single-step deamination sequencing (SSD-seq) method, designed to precisely map 5hmC across the genome at single-base resolution. SSD-seq takes advantage of a screened engineered human apolipoprotein B mRNA-editing catalytic polypeptide-like 3A (A3A) protein, known as eA3A-v10, to selectively deaminate cytosine (C) and 5-methylcytosine (5mC) but not 5hmC. During sequencing, the deaminated C and 5mC are converted to uracil (U) and thymine (T), read as T in the sequencing data. However, 5hmC remains unaffected by eA3A-v10 and is read as C during sequencing. Consequently, the presence of C in the sequence reads indicates the original 5hmC. We applied SSD-seq to generate a base-resolution map of 5hmC in human lung tissue. Our findings revealed that 5hmC was predominantly localized to CpG dinucleotides. Furthermore, the base-resolution map of 5hmC generated by SSD-seq demonstrated a strong correlation with prior ACE-seq results. The advantages of SSD-seq are its single-step process, absence of bisulfite treatment or DNA glycosylation, cost effectiveness, and ability to detect and quantify 5hmC directly at single-base resolution.

18.
Braz. j. infect. dis ; 22(6): 477-486, Nov.-Dec. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-984016

RESUMO

ABSTRACT Antiviral drug resistance is the most important factor contributing to treatment failure using nucleos(t)ide analogs such as lamivudine for chronic infection with hepatitis B virus (HBV). Development of a system supporting efficient replication of clinically resistant HBV strains is imperative, and new antiviral drugs are needed urgently to prevent selection of drug-resistant HBV mutants. A novel fluorinated cytidine analog, NCC (N-cyclopropyl-4′-azido-2′-deoxy-2′-fluoro-β-d-cytidine), was recently shown to strongly inhibit human HBV in vitro and in vivo. This study was designed to evaluate the antiviral activity of NCC against lamivudine-resistant HBV. We generated a stable cell line encoding the major pattern of lamivudine-resistant mutations rtL180M/M204V and designated it "HepG2.RL1". Immuno-transmission electron microscopic examination and enzyme-linked immunosorbent assay were used to detect secretion of HBV-specific particles and antigens. Quantification of extracellular DNA and intracellular DNA of HepG2.RL1 cells by quantitative real-time polymerase chain reaction revealed >625-fold and >5556-fold increases in the 50% inhibitory concentration of lamivudine, respectively, compared with that for the wild-type virus. The results showed that NCC inhibited DNA replication and HBeAg production in wild-type or lamivudine-resistant HBV in a dose-dependent manner. In conclusion, screening for antiviral compounds active against lamivudine-resistant HBV can be carried out with relative ease using hepG2.RL1 cells. NCC is a potential antiviral agent against wild-type HBV and clinical lamivudine-resistant HBV and deserves evaluation for the treatment of HBV infection.


Assuntos
Humanos , Feminino , Pessoa de Meia-Idade , Antivirais/farmacologia , Replicação Viral/efeitos dos fármacos , Vírus da Hepatite B/efeitos dos fármacos , Lamivudina/farmacologia , Citidina/análogos & derivados , DNA Viral/química , Testes de Sensibilidade Microbiana , Linhagem Celular , Vírus da Hepatite B/isolamento & purificação , Vírus da Hepatite B/fisiologia , Hepatócitos/virologia , Farmacorresistência Viral/efeitos dos fármacos , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA