Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3641, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684736

RESUMO

Electrochemical carbon dioxide/carbon monoxide reduction reaction offers a promising route to synthesize fuels and value-added chemicals, unfortunately their activities and selectivities remain unsatisfactory. Here, we present a general surface molecular tuning strategy by modifying Cu2O with a molecular pyridine-derivative. The surface modified Cu2O nanocubes by 4-mercaptopyridine display a high Faradaic efficiency of greater than 60% in electrochemical carbon monoxide reduction reaction to acetate with a current density as large as 380 mA/cm2 in a liquid electrolyte flow cell. In-situ attenuated total reflectance surface-enhanced infrared absorption spectroscopy reveals stronger *CO signal with bridge configuration and stronger *OCCHO signal over modified Cu2O nanocubes by 4-mercaptopyridine than unmodified Cu2O nanocubes during electrochemical CO reduction. Density function theory calculations disclose that local molecular tuning can effectively regulate the electronic structure of copper catalyst, enhancing *CO and *CHO intermediates adsorption by the stabilization effect through hydrogen bonding, which can greatly promote asymmetric *CO-*CHO coupling in electrochemical carbon monoxide reduction reaction.

2.
J Am Chem Soc ; 146(18): 12530-12537, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38664859

RESUMO

Electrocatalytic nitrogen oxide reduction (NOxRR) emerges as an effective way to bring the disrupted nitrogen cycle back into balance. However, efficient and selective NOxRR is still challenging partly due to the complex reaction mechanism, which is influenced by experimental conditions such as pH and electrode potential. Here, we have studied the enzyme-inspired iron single-atom catalysts (Fe-N4-C) and identified that the selectivity roots in the first step of the nitric oxide reduction. Combining the constrained molecular dynamics (MD) simulations with the quasi-equilibrium approximation, the effects of electrode potential and pH on the reaction free energy were considered explicitly and predicted quantitatively. Systematic heat maps for selectivity between single-N and N-N-coupled products in a wide pH-potential space are further developed, which have reproduced the experimental observations of NOxRR. The approach presented in this study allows for a realistic simulation of the electrocatalytic interfaces and a quantitative evaluation of interfacial effects. Our results in this study provide valuable and straightforward guidance for selective NOx reduction toward desired products by precisely designing the experimental conditions.

3.
Angew Chem Int Ed Engl ; : e202406535, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652809

RESUMO

Borophenes have sparked considerable interest owing to their fascinating physical characteristics and diverse polymorphism. However, borophene nanoribbons (BNRs) with widths less than 2 nm have not been achieved. Herein, we report the experimental realization of supernarrow BNRs. Combining scanning tunneling microscopy imaging with density functional theory modeling and ab initio molecular dynamics simulations, we demonstrate that, under the applied growth conditions, boron atoms can penetrate the outermost layer of Au(111) and form BNRs composed of a pair of zigzag (2,2) boron rows. The BNRs have a width self-contained to ∼1 nm and dipoles at the edges to keep them separated. They are embedded in the outermost Au layer and shielded on top by the evacuated Au atoms, free of the need for post-passivation. Scanning tunneling spectroscopy reveals distinct edge states, primarily attributed to the localized spin at the BNRs' zigzag edges. This work adds a new member to the boron material family and introduces a new physical feature to borophenes.

4.
J Am Chem Soc ; 146(20): 13703-13708, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38634757

RESUMO

Tuning the active site structure of metal-nitrogen-carbon electrocatalysts has recently attracted increasing interest. Herein, we report a bottom-up synthesis strategy in which atomically regulated N-doped polycyclic aromatic hydrocarbons (N-PAHs) of NxC42-x (x = 1, 2, 3, 4) were used as ligands to allow tuning of the active site's structures of M-Nx and establish correlations between the structures and electrocatalytic properties. Based on the synthesis process, detailed characterization, and DFT calculation results, active structures of Nx-Fe1-Nx in Fe1-Nx/RGO catalysts were constructed. The results demonstrated that the extra uncoordinated N atoms around the Fe1-N4 moieties disrupted the π-conjugated NxC42-x ligands, which led to more localized electronic state in the Fe1-N4 moieties and superior catalytic performance. Especially, the Fe1-N4/RGO exhibited optimized performance for ORR with E1/2 increasing by 80 mV and Jk at 0.85 V improved 18 times (compared with Fe1-N1/RGO). This synthesis strategy utilizing N-PAHs holds significant promise for enhancing the controllability of metal-nitrogen-carbon electrocatalyst preparation.

5.
J Chem Phys ; 160(7)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38375907

RESUMO

The catalytic hydrogenation of biomass-derived chemicals is essential in chemical industry due to the growing demand for sustainable and renewable energy sources. In this study, we present a comprehensive theoretical investigation regarding the hydrogenation of glycolaldehyde to ethylene glycol over a Ru/C catalyst by employing density functional theory and ab initio molecular dynamics simulations. With inclusion of explicit solvation, we have demonstrated that the glycolaldehyde hydrogenation is significantly improved due to the fast proton transfer through the hydrogen bond network. The enhanced activity could be attributed to the participation of the solvent water as the hydrogen source and the highly positively charged state of a Ru cluster in an aqueous phase, which are critical for the activation of aldehyde groups and proton-assisted hydrogenation. Overall, our findings provide valuable insights into glycolaldehyde hydrogenation over Ru/C catalysts in the aqueous phase, highlighting the importance of solvation effects in the biomass conversion.

6.
J Phys Chem Lett ; 15(5): 1314-1320, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38285648

RESUMO

In this work, we advanced an efficient free energy sampling method based on constrained ab initio molecular dynamics (cAIMD) with a fully explicit solvent layer to depict the electrochemical reaction process at constant surface charge density, named the "Constant-Potential Thermodynamic Integration (CPTI)" method. For automatically adjusting surface charge density at different states, we built an "on-the-fly" procedure which is capable of managing all the necessary steps during cAIMD simulations, including the system pre-equilibrium, surface charge density updating, and force sampling. We applied it to predict the potential-dependent free energy profiles of CO2 adsorption on a single-atom catalyst. The results show that our method can not only account for changes in electrostatic potential energy associated with potential but also consider the potential-induced solvation effects. Our approach enables the accurate simulation of electrochemical environment by presenting the complete solid-liquid interface and efficient computation of electrocatalytic reaction energetics based on a robust potential descriptor.

7.
Acc Chem Res ; 57(2): 198-207, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38166366

RESUMO

ConspectusSingle atom electrocatalysts, with noble metal-free composition, maximal atom efficiency, and exceptional reactivity toward various energy and environmental applications, have become a research hot spot in the recent decade. Their simplicity and the isolated nature of the atomic structure of their active site have also made them an ideal model catalyst system for studying reaction mechanisms and activity trends. However, the state of the single atom active sites during electrochemical reactions may not be as simple as is usually assumed. To the contrary, the single atom electrocatalysts have been reported to be under greater influence from interfacial dynamics, with solvent and electrolyte ions perpetually interacting with the electrified active center under an applied electrode potential. These complexities render the activity trends and reaction mechanisms derived from simplistic models dubious.In this Account, with a few popular single atom electrocatalysis systems, we show how the change in electrochemical potential induces nontrivial variation in the free energy profile of elemental electrochemical reaction steps, demonstrate how the active centers with different electronic structure features can induce different solvation structures at the interface even for the same reaction intermediate of the simplest electrochemical reaction, and discuss the implication of the complexities on the kinetics and thermodynamics of the reaction system to better address the activity and selectivity trends. We also venture into more intriguing interfacial phenomena, such as alternative reaction pathways and intermediates that are favored and stabilized by solvation and polarization effects, long-range interfacial dynamics across the region far beyond the contact layer, and the dynamic activation or deactivation of single atom sites under operation conditions. We show the necessity of including realistic aspects (explicit solvent, electrolyte, and electrode potential) into the model to correctly capture the physics and chemistry at the electrochemical interface and to understand the reaction mechanisms and reactivity trends. We also demonstrate how the popular simplistic design principles fail and how they can be revised by including the kinetics and interfacial factors in the model. All of these rich dynamics and chemistry would remain hidden or overlooked otherwise. We believe that the complexity at an electrochemical interface is not a curse but a blessing in that it enables deeper understanding and finer control of the potential-dependent free energy landscape of electrochemical reactions, which opens up new dimensions for further design and optimization of single atom electrocatalysts and beyond. Limitations of current methods and challenges faced by the theoretical and experimental communities are discussed, along with the possible solutions awaiting development in the future.

8.
Nanoscale ; 16(1): 262-272, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38054842

RESUMO

Despite the prodigious potential of lithium-sulfur (Li-S) batteries as future rechargeable electrochemical systems, their commercial implementation is hindered by several vital issues, including the shuttle effect and sluggish migration of lithium-polysulfides leading to rapid capacity fading. Here, we systematically investigate the potential of first-row two-dimensional transition metal carbides (TMCs) as sulfur cathodes for Li-S batteries. The adsorption strength of lithium-polysulfides on TMCs is induced by the amount of charge transfer from the former to the latter and the proposed periodic relationship between sulfur in Li2S and 3d-transition metals. Our findings show that the VC nanosheet possesses immense anchoring potential and exhibits a comparatively low migration energy barrier for lithium-ion and Li2S molecules. Additionally, we report ab initio molecular dynamics simulations for lithiated polysulfide species anchored on a TMC-based model with a liquid-electrolyte medium. The microscopic reaction mechanism, revealed by the evolution of the reaction voltage during lithiation, demonstrates that the dissolution of high-order lithium-polysulfides in the electrolytes can be prevented due to their robust interaction with TMC-based cathode materials. These appealing features suggest that TMCs present colossal performance improvements for anchoring lithium-polysulfides, stimulating the active design of sulfur cathodes for practical Li-S batteries.

9.
J Chem Phys ; 159(9)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37671961

RESUMO

In this work, we have proposed a Continuous Constant Potential Model (CCPM) based on grand canonical density functional theory for describing the electrocatalytic thermodynamics on single atom electrocatalysts dispersed on graphene support. The linearly potential-dependent capacitance is introduced to account for the net charge variation of the electrode surface and to evaluate the free energetics. We have chosen the CO2 electro-reduction reaction on single-copper atom catalysts, dispersed by nitrogen-doped graphene [CuNX@Gra (X = 2, 4)], as an example to show how our model can predict the potential-dependent free energetics. We have demonstrated that the net charges of both catalyst models are quadratically correlated with the applied potentials and, thus, the quantum capacitance is linearly dependent on the applied potentials, which allows us to continuously quantify the potential effect on the free energetics during the carbon dioxide reduction reaction instead of confining it to a specific potential. On the CuN4@Gra model, it is suggested that CO2 adsorption, coupled with an electron transfer, is a potential determining step that is energetically unfavorable even under high overpotentials. Interestingly, the hydrogen adsorption on CuN4@Gra is extremely easy to occur at both the Cu and N sites, which probably results in the reconstruction of the CuN4@Gra catalyst, as reported by many experimental observations. On CuN2@Gra, the CO2RR is found to exhibit a higher activity at the adjacent C site, and the potential determining step is shifted to the *CO formation step at a wide potential range. In general, CCPM provides a simple method for studying the free energetics for the electrocatalytic reactions under constant potential.

10.
Adv Sci (Weinh) ; 10(32): e2303677, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37749877

RESUMO

The rational design of electrocatalysis has emerged as one of the most thriving means for mitigating energy and environmental crises. The key to this effort is the understanding of the complex electrochemical interface, wherein the electrode potential as well as various internal factors such as H-bond network, adsorbate coverage, and dynamic behavior of the interface collectively contribute to the electrocatalytic activity and selectivity. In this context, the authors have reviewed recent theoretical advances, and especially, the contributions to modeling the realistic electrocatalytic processes at complex electrochemical interfaces,  and illustrated the challenges and fundamental problems in this field. Specifically, the significance of the inclusion of explicit solvation and electrode potential as well as the strategies toward the design of highly efficient electrocatalysts are discussed. The structure-activity relationships and their dynamic responses to the environment and catalytic functionality under working conditions are illustrated to be crucial factors for understanding the complexed interface and the electrocatalytic activities. It is hoped that this review can help spark new research passion and ultimately bring a step closer to a realistic and systematic modeling method for electrocatalysis.

11.
J Am Chem Soc ; 145(24): 13038-13047, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37285479

RESUMO

The design of active and low-cost electrocatalyst for hydrogen evolution reaction (HER) is the key to achieving a clean hydrogen energy infrastructure. The most successful design principle of hydrogen electrocatalyst is the activity volcano plot, which is based on Sabatier principle and has been used to understand the exceptional activity of noble metal and design of metal alloy catalysts. However, this application of volcano plot in designing single-atom electrocatalysts (SAEs) on nitrogen doped graphene (TM/N4C catalysts) for HER has been less successful due to the nonmetallic nature of the single metal atom site. Herein, by performing ab initio molecular dynamics simulations and free energy calculations on a series of SAEs systems (TM/N4C with TM = 3d, 4d, or 5d metals), we find that the strong charge-dipole interaction between the negatively charged *H intermediate and the interfacial H2O molecules could alter the transition path of the acidic Volmer reaction and dramatically raise its kinetic barrier, despite its favorable adsorption free energy. Such kinetic hindrance is also experimentally confirmed by electrochemical measurements. By combining the hydrogen adsorption free energy and the physics of competing interfacial interactions, we propose a unifying design principle for engineering the SAEs used for hydrogen energy conversion, which incorporates both thermodynamic and kinetic considerations and allows going beyond the activity volcano model.

12.
J Am Chem Soc ; 145(23): 12760-12770, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37154477

RESUMO

Tungsten and molybdenum carbides have shown great potential in catalysis and superconductivity. However, the synthesis of ultrathin W/Mo carbides with a controlled dimension and unique structure is still difficult. Here, inspired by the host-guest assembly strategy with single-walled carbon nanotubes (SWCNTs) as a transparent template, we reported the synthesis of ultrathin (0.8-2.0 nm) W2C and Mo2C nanowires confined in SWCNTs deriving from the encapsulated W/Mo polyoxometalate clusters. The atom-resolved electron microscope combined with spectroscopy and theoretical calculations revealed that the strong interaction between the highly carbophilic W/Mo and SWCNT resulted in the anisotropic growth of carbide nanowires along a specific crystal direction, accompanied by lattice strain and electron donation to the SWCNTs. The SWCNT template endowed carbides with resistance to H2O corrosion. Different from normal modification on the outer surface of SWCNTs, such M2C@SWCNTs (M = W, Mo) provided a delocalized and electron-enriched SWCNT surface to uniformly construct the negatively charged Pd catalyst, which was demonstrated to inhibit the formation of active PdHx hydride and thus achieve highly selective semihydrogenation of a series of alkynes. This work could provide a nondestructive way to design the electron-delocalized SWCNT surface and expand the methodology in synthesizing unusual 1D ultrathin carbophilic-metal nanowires (e.g., TaC, NbC, ß-W) with precise control of the anisotropy in SWCNT arrays.

13.
J Phys Chem Lett ; 14(17): 4033-4041, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37093648

RESUMO

Designing an active and selective catalyst for nonoxidative conversion of methane under mild conditions is critical for natural gas utilization as a chemical feedstock. Here, we demonstrate that the origin of the selective nonoxidative conversion of methane by the titanium carbide supported nickel cluster arises from the formation of a nickel carbide site under the reaction conditions, which could stabilize the CHx intermediate to facilitate the C-C coupling, but further coking is rather limited. The reaction mechanism reveals that the C2 products can be formed via a key -CHx-CH3 intermediate. In addition, we demonstrate that boration of the nickel cluster site can improve the methane conversion toward C2 products. That higher activity and selectivity from the moderate rise in d orbital energy levels can therefore be considered as a descriptor of the catalyst effectiveness. These findings provide an understanding of the dynamic behavior of the single nickel cluster toward methane conversion to C2 products and guidance for their future rational design.

14.
JACS Au ; 3(1): 143-153, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36711102

RESUMO

The aldehyde hydrogenation for stabilizing and upgrading biomass is typically performed in aqueous phase with supported metal catalysts. By combining density functional theory calculations and ab initio molecular dynamics simulations, the model reaction of formaldehyde hydrogenation with a Pt/TiO2 catalyst is investigated with explicit solvent water molecules. In aqueous phase, both the O vacancy (Ov) on support and solvent molecules could donate charges to a Pt cluster, where the Ov could dominantly reduce the Pt cluster from positive to negative. During the formaldehyde hydrogenation, the water molecules could spontaneously protonate the O in the aldehyde group by acid/base exchange, generating the OH* at the metal-support interface by long-range proton transfer. By comparing the stoichiometric and reduced TiO2 support, it is found that the further hydrogenation of OH* is hard on the positively charged Pt cluster over stoichiometric TiO2. However, with the presence of Ov on reduced support, the OH* hydrogenation could become not only exergonic but also kinetically more facile, which prohibits the catalyst from poisoning. This mechanism suggests that both the proton transfer from solvent water molecules and the easier OH* hydrogenation from Ov could synergistically promote aldehyde hydrogenation. That means, even for such simple hydrogenation in water, the catalytic mechanism could explicitly relate to all of the metal cluster, oxide support, and solvent waters. Considering the ubiquitous Ov defects in reducible oxide supports and the common aqueous environment, this synergistic effect may not be exclusive to Pt/TiO2, which can be crucial for supported metal catalysts in biomass conversion.

15.
Adv Mater ; 34(41): e2206368, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35987876

RESUMO

Platinum-based catalysts occupy a pivotal position in diverse catalytic applications in hydrogen chemistry and electrochemistry, for instance, the hydrogen evolution reactions (HER). While adsorbed Pt atoms on supports often cause severe mismatching on electronic structures and HER behaviors from metallic Pt due to the different energy level distribution of electron orbitals. Here, the design of crystalline lattice-confined atomic Pt in metal carbides using the Pt-centered polyoxometalate frameworks with strong PtO-metal covalent bonds is reported. Remarkably, the lattice-confined atomic Pt in the tungsten carbides (Ptdoped @WCx , both Pt and W have atomic radii of 1.3 Å) exhibit near-zero valence states and similar electronic structures as metallic Pt, thus delivering matched energy level distributions of the Pt 5dz 2 and H 1s orbitals and similar acidic hydrogen evolution behaviors. In alkaline conditions, the Ptdoped @WCx exhibits 40 times greater mass activity (49.5 A mgPt -1 at η = 150 mV) than the Pt@C because of the favorable water dissociation and H* transport. These findings offer a universal pathway to construct urgently needed atomic-scale catalysts for broad catalytic reactions.

16.
Sci Adv ; 8(25): eabo4599, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35731880

RESUMO

Intermetallic catalysts are of immense interest, but how heterometals diffuse and related interface structure remain unclear when there exists a strong metal-support interaction. Here, we developed a kinetic diffusion-controlled method and synthesized intermetallic Pt2Mo nanocrystals with twin boundaries on mesoporous carbon (Pt2Mo/C). The formation of small-sized twinned intermetallic nanocrystals is associated with the strong Mo-C interaction-induced slow Mo diffusion and the heterogeneity of alloying, which is revealed by an in situ aberration-corrected transmission electron microscope (TEM) at high temperature. The twinned Pt2Mo/C constitutes a promising CO-resistant catalyst for highly selective hydrogenation of nitroarenes. Theoretical calculations and environmental TEM suggest that the weakened CO adsorption over Pt sites of Pt2Mo twin boundaries and their local region endows them with high CO resistance, selectivity, and reusability. The present strategy paves the way for tailoring the interface structure of high-melting point Mo/W-based intermetallic nanocrystals that proved to be important for the industrially viable reactions.

17.
Nat Commun ; 13(1): 1734, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365615

RESUMO

Fundamental understanding of the dynamic behaviors at the electrochemical interface is crucial for electrocatalyst design and optimization. Here, we revisit the oxygen reduction reaction mechanism on a series of transition metal (M = Fe, Co, Ni, Cu) single atom sites embedded in N-doped nanocarbon by ab initio molecular dynamics simulations with explicit solvation. We have identified the dissociative pathways and the thereby emerged solvated hydroxide species for all the proton-coupled electron transfer (PCET) steps at the electrochemical interface. Such hydroxide species can be dynamically confined in a "pseudo-adsorption" state at a few water layers away from the active site and respond to the redox event at the catalytic center in a coupled manner within timescale less than 1 ps. In the PCET steps, the proton species (in form of hydronium in neutral/acidic media or water in alkaline medium) can protonate the pseudo-adsorbed hydroxide without needing to travel to the direct catalyst surface. This, therefore, expands the reactive region beyond the direct catalyst surface, boosting the reaction kinetics via alleviating mass transfer limits. Our work implies that in catalysis the reaction species may not necessarily bind to the catalyst surface but be confined in an active region.

18.
Nat Commun ; 13(1): 419, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058444

RESUMO

Catalytic-materials design requires predictive modeling of the interaction between catalyst and reactants. This is challenging due to the complexity and diversity of structure-property relationships across the chemical space. Here, we report a strategy for a rational design of catalytic materials using the artificial intelligence approach (AI) subgroup discovery. We identify catalyst genes (features) that correlate with mechanisms that trigger, facilitate, or hinder the activation of carbon dioxide (CO2) towards a chemical conversion. The AI model is trained on first-principles data for a broad family of oxides. We demonstrate that surfaces of experimentally identified good catalysts consistently exhibit combinations of genes resulting in a strong elongation of a C-O bond. The same combinations of genes also minimize the OCO-angle, the previously proposed indicator of activation, albeit under the constraint that the Sabatier principle is satisfied. Based on these findings, we propose a set of new promising catalyst materials for CO2 conversion.

19.
Psychol Health Med ; 27(2): 488-495, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34263682

RESUMO

To investigate the sleep quality and mental health status of healthcare professionals during the outbreak of coronavirus disease 2019 (COVID-19) in order to promote timely intervention and treatment. An Questionnaire Star of WeChat online survey was conducted at Hwamei Hospital, University of Chinese Academy of Sciences, NingBo, China. The questionnaire consisted of two parts including sociodemographic characteristics, and the Pittsburgh Sleep Quality Index (PSQI), the Generalized Anxiety Disorder (GAD-7) scale, a depression screening scale (Patient Health Questionnaire-9 [PHQ-9]) so as to investigate the sleep quality and mental health status of healthcare professionals during the outbreak of COVID-19.The data were analyzed with the t-test, χ2 test, one-way analysis of variance (ANOVA) and Pearson correlation, P < 0.05 was considered statistically significant. The mean score of PSQI is 5.8 ± 3.7 and the incidence of sleep disorders was 28.8% among the healthcare professionals and was related to occupation, title, education level, role and some underlying diseases. The positive rates for anxiety and depression among the healthcare professionals were 33.2% and 39.4% according to the GAD-7 and PHQ-9. Mental health status was related to occupation, education level, role and some underlying diseases. During the COVID-19 outbreak, sleep quality was significantly correlated with anxiety and depression among the healthcare professionals. The incidences of sleep disorder, anxiety and depression among healthcare professionals have been high. Furthermore, these disorders are interrelated and require timely intervention and treatment.


Assuntos
COVID-19 , Ansiedade/epidemiologia , COVID-19/epidemiologia , China/epidemiologia , Estudos Transversais , Atenção à Saúde , Depressão/epidemiologia , Surtos de Doenças , Nível de Saúde , Humanos , SARS-CoV-2 , Qualidade do Sono
20.
Water Res ; 202: 117391, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34233248

RESUMO

Increasing number of emerging pollutants in environments requires an effective approach which can facilitate the prediction of reactivity and provide insights into the reaction mechanisms. Computational chemistry is exactly the tool to fulfill this demand with its good performance in theoretical investigation of chemical reactions at molecular level. In this study, chlorination of sulfonamide antibiotics is used as an illustration to present a systematic strategy demonstrating how computational chemistry can be applied to investigate the reaction behavior of emerging pollutants. Sulfonamides is a class of micropollutants that contain the common structure of 4-aminobenzenesulfonmaide while differ in their heterocycles. Based on the calculated conceptual DFT indices, the reactive sites of sulfonamide are successfully predicted, which locate on their common structure of 4-aminobenzenesulfonmaide. Therefore, all sulfonamides follow the similar reaction pathway. Product identification by LTQ-Orbitrap MS further verifies the in silico prediction. Three critical pathways are discovered, i.e., S-N bond cleavage, Cl-substitution onto aniline-N, and the following rearrangement to lose -SO2- group, among which Cl-substitution is the key step due to its lowest free energy barrier. Heterocycles impact the reaction rate by affecting the electronic density of aniline group. In general, the more electron-donating the heterocycle is, the more readily sulfonamides to be chlorinated.


Assuntos
Poluentes Ambientais , Halogenação , Antibacterianos , Química Computacional , Sulfonamidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA