Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Bull (Beijing) ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-39030104

RESUMO

The origin and spread of agriculture facilitated a decline in human mobility and eventually led to a predominantly sedentary lifestyle globally, including on the Tibetan Plateau. Previous studies have proposed an evolution of prehistoric agriculture, from millet-based to barley-based farming. However, details regarding the process are vague. Here, we present diachronic changes in cropping structure from Xizang on the basis of a quantitative analysis of archaeobotanical remains from 12 sites located in southeastern Xizang. The advent of agriculture in Xizang began in the southeastern region around 4800 cal a BP and resulted in a quick spread of millet agriculture from the Hengduan Mountains to the Yarlung Zangbo River region. Subsequently, the introduction of barley and wheat in Xizang led to the transformation of millet-based farming into mixed farming after 3600 cal a BP. Eventually, around 3000 cal a BP, barley and wheat dominated across the entire Xizang with declining occurrences of millet. It took more than 600 years for barley and wheat to dominate in the Tibetan cropping system, which may reflect the time required for these exotic species to adapt physiologically to their new niche. In addition to the diachronic changes in crop farming, the ratio of barley to wheat and foxtail millet to broomcorn millet also varied at different elevations possibly due to local environmental variations and the crops' physiological requirements.

2.
Microbiome ; 12(1): 7, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191433

RESUMO

BACKGROUND: The hadal sediment, found at an ocean depth of more than 6000 m, is geographically isolated and under extremely high hydrostatic pressure, resulting in a unique ecosystem. Thaumarchaeota are ubiquitous marine microorganisms predominantly present in hadal environments. While there have been several studies on Thaumarchaeota there, most of them have primarily focused on ammonia-oxidizing archaea (AOA). However, systematic metagenomic research specifically targeting heterotrophic non-AOA Thaumarchaeota is lacking. RESULTS: In this study, we explored the metagenomes of Challenger Deep hadal sediment, focusing on the Thaumarchaeota. Functional analysis of sequence reads revealed the potential contribution of Thaumarchaeota to recalcitrant dissolved organic matter degradation. Metagenome assembly binned one new group of hadal sediment-specific and ubiquitously distributed non-AOA Thaumarchaeota, named Group-3.unk. Pathway reconstruction of this new type of Thaumarchaeota also supports heterotrophic characteristics of Group-3.unk, along with ABC transporters for the uptake of amino acids and carbohydrates and catabolic utilization of these substrates. This new clade of Thaumarchaeota also contains aerobic oxidation of carbon monoxide-related genes. Complete glyoxylate cycle is a distinctive feature of this clade in supplying intermediates of anabolic pathways. The pan-genomic and metabolic analyses of metagenome-assembled genomes belonging to Group-3.unk Thaumarchaeota have highlighted distinctions, including the dihydroxy phthalate decarboxylase gene associated with the degradation of aromatic compounds and the absence of genes related to the synthesis of some types of vitamins compared to AOA. Notably, Group-3.unk shares a common feature with deep ocean AOA, characterized by their high hydrostatic pressure resistance, potentially associated with the presence of V-type ATP and di-myo-inositol phosphate syntheses-related genes. The enrichment of organic matter in hadal sediments might be attributed to the high recruitment of sequence reads of the Group-3.unk clade of heterotrophic Thaumarchaeota in the trench sediment. Evolutionary and genetic dynamic analyses suggest that Group-3 non-AOA consists of mesophilic Thaumarchaeota organisms. These results indicate a potential role in the transition from non-AOA to AOA Thaumarchaeota and from thermophilic to mesophilic Thaumarchaeota, shedding light on recent evolutionary pathways. CONCLUSIONS: One novel clade of heterotrophic non-AOA Thaumarchaeota was identified through metagenome analysis of sediments from Challenger Deep. Our study provides insight into the ecology and genomic characteristics of the new sub-group of heterotrophic non-AOA Thaumarchaeota, thereby extending the knowledge of the evolution of Thaumarchaeota. Video Abstract.


Assuntos
Amônia , Metagenoma , Metagenoma/genética , Ecossistema , Metagenômica , Archaea/genética
3.
Phenomics ; 3(3): 300-308, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37325707

RESUMO

The human microbiome plays a crucial role in human health. In the past decade, advances in high-throughput sequencing technologies and analytical software have significantly improved our knowledge of the human microbiome. However, most studies concerning the human microbiome did not provide repeatable protocols to guide the sample collection, handling, and processing procedures, which impedes obtaining valid and timely microbial taxonomic and functional results. This protocol provides detailed operation methods of human microbial sample collection, DNA extraction, and library construction for both the amplicon sequencing-based measurements of the microbial samples from the human nasal cavity, oral cavity, and skin, as well as the shotgun metagenomic sequencing-based measurements of the human stool samples among adult participants. This study intends to develop practical procedure standards to improve the reproducibility of microbiota profiling of human samples. Supplementary Information: The online version contains supplementary material available at 10.1007/s43657-023-00097-y.

5.
Microbiol Spectr ; 10(5): e0226722, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36073919

RESUMO

Characterizing the skin mycobiome is necessary to define its association with the host immune system, particularly in children. In this study, we describe the skin mycobiome on the face, ventral forearm, and calf of 72 prepubescent children (aged 1 to 10 years) and their mothers, based on internal transcribed spacer (ITS) amplicon sequencing. The age and delivery mode at birth are the most influential factors shaping the skin mycobiome. Compared with that of the vaginally born children, the skin mycobiome of caesarean-born children is assembled by predominantly deterministic niche-based processes and exhibits a more fragile microbial network at all three sampling sites. Moreover, vaginal delivery leads to clearer intra- and interindividual specialization of fungal structures with increasing age; this phenomenon is not observed in caesarean-born children. The maternal correlation with children also differs based on the mode of delivery; specifically, the mycobiomes of vaginally born children at younger ages are more strongly correlated with vagina-associated fungal genera (Candida and Rhodotorula), whereas those of caesarean-delivered children at elder age include more skin-associated and airborne fungal genera (Malassezia and Alternaria). Based on this ecological framework, our results suggest that the delivery mode is significantly associated with maturation of the skin fungal community in children. IMPORTANCE Human skin is permanently colonized by microbes starting at birth. The hygiene hypothesis suggests that a lack of early-life immune imprinting weakens the body's resilience against atopic disorders later in life. To better understand fungal colonization following early-life periods affected by interruption, we studied the skin mycobiomes of 73 children and their mothers. Our results suggest a differentiation of the skin mycobiomes between caesarean-born and vaginally born children. Caesarean-born children exhibit a mycobiome structure with more fitted deterministic niche-based processes, a fragile network, and an unchanged microbial dissimilarity over time. In vaginally born children, this dissimilarity increases with age. The results indicate that initial microbial colonization has a long-term impact on a child's skin mycobiome. We believe that these findings will inspire further investigations of the "hygiene hypothesis" in the human microbiome, especially in providing novel insights into influences on the development of the early-life microbiome.


Assuntos
Microbiota , Micobioma , Lactente , Recém-Nascido , Criança , Feminino , Gravidez , Humanos , Idoso , Pele/microbiologia , Candida , Fungos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA