Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Microbiol Spectr ; : e0061124, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39292002

RESUMO

This study explores the effects of disinfectant and antibiotic exposure on gut health, focusing on gut microbiota balance and gut immune function. Our analysis indicates that disinfectants increase the proportion of Gram-positive bacteria, particularly increasing Staphylococcus levels, while antibiotics increase the proportion of Gram-negative bacteria, especially Bacteroides levels. These changes disrupt microbial harmony and affect the gut microbiome's functional capacity. Additionally, our research reveals that both disinfectants and antibiotics reduce colon length and cause mucosal damage. A significant finding is the downregulation of NLRC4, a key immune system regulator in the gut, accompanied by changes in immune factor expression. This interaction between chemical exposure and immune system dysfunction increases susceptibility to inflammatory bowel disease and other gut conditions. Given the importance of disinfectants in disease prevention, this study advocates for a balanced approach to their use, aiming to protect public health while minimizing adverse effects on the gut microbiome and immune function. IMPORTANCE: Disinfectants are extensively employed across various sectors, such as the food sector. Disinfectants are widely used in various sectors, including the food processing industry, animal husbandry, households, and pharmaceuticals. Their extensive application risks environmental contamination, impacting water and soil quality. However, the effect of disinfectant exposure on the gut microbiome and the immune function of animals remains a significant, unresolved issue with profound public health implications. This highlights the need for increased scrutiny and more regulated use of disinfectants to mitigate unintended consequences on gut health and maintain immune system integrity.

2.
Adv Healthc Mater ; : e2401430, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177124

RESUMO

Regenerating bone defects in diabetic rats presents a significant challenge due to the detrimental effects of reactive oxygen species and impaired autophagy on bone healing. To address these issues, a metformin-modified biomimetic silicified collagen scaffold is developed utilizing the principles of biomimetic silicification. In vitro and in vivo experiments demonstrated that the scaffold enhanced bone tissue regeneration within the diabetic microenvironment through the release of dual bio-factors. Further analysis reveals a potential therapeutic mechanism whereby these dual bio-factors synergistically promoted osteogenesis in areas of diabetic bone defects by improving mitochondrial autophagy and maintaining redox balance. The present study provides critical insights into the advancement of tissue engineering strategies aimed at bone regeneration in diabetic patients. The study also sheds light on the underlying biological mechanisms.

3.
Phytother Res ; 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39180344

RESUMO

Intracranial aneurysm (IA) is a common cerebrovascular disease. Immune system disorders and endothelial dysfunction are essential mechanisms of its pathogenesis. This study aims to explore the therapeutic effect and mechanism of Geniposide (Gen) on IA, which has a protective impact on endothelial cells and cardiovascular and cerebrovascular diseases. IA mouse models were administered intraperitoneal injections of geniposide for 2 weeks following elastase injection into the right basal ganglia of the brain for intervention. The efficacy of Gen in treating IA was evaluated through pathological testing and transcriptome sequencing analysis of Willis ring vascular tissue. The primary mechanism of action was linked to the expression of GSK3ß in Th17 cells. The percentage of splenic Th17 cell differentiation in IA mice was significantly inhibited by Gen. GSK3ß/STAT3, and other pathway protein expression levels were also significantly inhibited by Gen. Additionally, TNF-α and IL-23 cytokine contents were significantly downregulated after Gen treatment. These results indicated that Gen significantly inhibited the percentage of Th17 cell differentiation, an effect that was reversed upon overexpression of the GSK3B gene. Furthermore, Gen-treated, Th17 differentiation-inducing cell-conditioned medium significantly up-regulated the expression of tight junction proteins ZO-1, Occludin, and Claudin-5 in murine aortic endothelial cells. Administering the GSK3ß inhibitor Tideglusib to IA mice alleviated the severity of IA disease pathology and up-regulated aortic tight junction protein expression. In conclusion, Gen inhibits Th17 cell differentiation through GSK3ß, which reduces endothelial cell injury and up-regulates tight junction protein expression.

4.
Adv Mater ; : e2408510, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39155823

RESUMO

Constructing dual catalytic sites with charge density differences is an efficient way to promote urea electrosynthesis from parallel NO 3 - ${\mathrm{NO}}_3^ - $ and CO2 reduction yet still challenging in static system. Herein, a dynamic system is constructed by precisely controlling the asymmetric charge density distribution in an Au-doped coplanar Cu7 clusters-based 3D framework catalyst (Au@cpCu7CF). In Au@cpCu7CF, the redistributed charge between Au and Cu atoms changed periodically with the application of pulse potentials switching between -0.2 and -0.6 V and greatly facilitated the electrosynthesis of urea. Compared with the static condition of pristine cpCu7CF (FEurea = 5.10%), the FEurea of Au@cpCu7CF under pulsed potentials is up to 55.53%. Theoretical calculations demonstrated that the high potential of -0.6 V improved the adsorption of *HNO2 and *NH2 on Au atoms and inhibited the reaction pathways of by-products. While at the low potential of -0.2 V, the charge distribution between Au and Cu atomic sites facilitated the thermodynamic C-N coupling step. This work demonstrated the important role of asymmetric charge distribution under dynamic regulation for urea electrosynthesis, providing a new inspiration for precise control of electrocatalysis.

5.
Bioorg Med Chem ; 112: 117880, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39216382

RESUMO

Berberine is a quaternary ammonium isoquinoline alkaloid derived from traditional Chinese medicines Coptis chinensis and Phellodendron chinense. It has many pharmacological activities such as hypoglycemic, hypolipidemic, anti-tumor, antimicrobial and anti-inflammatory. Through structural modifications at various sites of berberine, the introduction of different groups can change berberine's physical and chemical properties, thereby improving the biological activity and clinical efficacy, and expanding the scope of application. This paper reviews the research progress and structure-activity relationships of berberine in recent years, aiming to provide valuable insights for the exploration of novel berberine derivatives.


Assuntos
Berberina , Berberina/química , Berberina/farmacologia , Berberina/análogos & derivados , Relação Estrutura-Atividade , Humanos , Estrutura Molecular , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/síntese química , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química
6.
iScience ; 27(6): 110098, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38947527

RESUMO

Females typically outlive males in animals, especially in species that provide long-term maternal care. However, life history theory predicts that investments in reproduction, such as lactation and offspring nursing, often shorten caretakers' longevity. Aiming to interpret this paradox, we selected the lactating jumping spider Toxeus magnus to investigate the effects of reproductive activities on longevity for two sexes. We found that: (1) although "milk" provisioning reduces female's longevity, mothers who cared for offspring (provisioned "milk" and nursing) lived the longest compared to virgins and those did not provide care; (2) copulation increased female's longevity but had no effects on males; and (3) the two sexes have comparable developmental duration, but the female adult's longevity was 2.1 times that of male's. This study suggests that the time requirement for offspring dispersal might act as a key selective force favoring females' adulthood extension, which ultimately generates the longer-lived females in maternal cared species.

7.
Curr Drug Metab ; 25(2): 157-163, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571358

RESUMO

AIM: The aim of this study was to investigate the metabolism of Gelsemium elegans in human, pig, goat and rat liver microsomes and to elucidate the metabolic pathways and cleavage patterns of the Gelsemium alkaloids among different species. METHODS: A human, goat, pig and rat liver microsomes were incubated in vitro. After incubating at 37°C for 1 hour and centrifuging, the processed samples were detected by HPLC/Qq-TOFMS was used to detect alcohol extract of Gelsemium elegans and its metabolites. RESULTS: Forty-six natural products were characterized from alcohol extract of Gelsemium elegans and 13 metabolites were identified. These 13 metabolites belong to the gelsemine, koumine, gelsedine, humantenine, yohimbane, and sarpagine classes of alkaloids. The metabolic pathways included oxidation, demethylation and dehydrogenation. After preliminary identification, the metabolites detected in the four species were different. All 13 metabolites were detected in pig and rat microsomes, but no oxidative metabolites of Gelsedine-type alkaloids were detected in goat and human microsomes. CONCLUSION: In this study, Gelsemium elegans metabolic patterns in different species are clarified and the in vitro metabolism of Gelsemium elegans is investigated. It is of great significance for its clinical development and rational application.


Assuntos
Alcaloides , Gelsemium , Cabras , Microssomos Hepáticos , Animais , Microssomos Hepáticos/metabolismo , Suínos , Humanos , Ratos , Alcaloides/metabolismo , Cromatografia Líquida de Alta Pressão , Especificidade da Espécie , Masculino , Extratos Vegetais
8.
Angew Chem Int Ed Engl ; 63(23): e202402458, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38545814

RESUMO

Visible-light sensitive and bi-functionally favored CO2 reduction (CRR)/evolution (CER) photocathode catalysts that can get rid of the utilization of ultraviolet light and improve sluggish kinetics is demanded to conquer the current technique-barrier of traditional Li-CO2 battery. Here, a kind of redox molecular junction sp2c metal-covalent organic framework (i.e. Cu3-BTDE-COF) has been prepared through the connection between Cu3 and BTDE and can serve as efficient photocathode catalyst in light-assisted Li-CO2 battery. Cu3-BTDE-COF with redox-ability, visible-light-adsorption region, electron-hole separation ability and endows the photocathode with excellent round-trip efficiency (95.2 %) and an ultralow voltage hysteresis (0.18 V), outperforming the Schiff base COFs (i.e. Cu3-BTDA-COF and Cu3-DT-COF) and majority of the reported photocathode catalysts. Combined theoretical calculations with characterizations, Cu3-BTDE-COF with the integration of Cu3 centers, thiazole and cyano groups possess strong CO2 adsorption/activation and Li+ interaction/diffusion ability to boost the CRR/CER kinetics and related battery property.

9.
Small ; 20(12): e2307467, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37940620

RESUMO

The electrochemical reduction of carbon dioxide (CO2) to ethylene creates a carbon-neutral approach to converting carbon dioxide into intermittent renewable electricity. Exploring efficient electrocatalysts with potentially high ethylene selectivity is extremely desirable, but still challenging. In this report, a laboratory-designed catalyst HKUST-1@Cu2O/PTFE-1 is prepared, in which the high specific surface area of the composites with improved CO2 adsorption and the abundance of active sites contribute to the increased electrocatalytic activity. Furthermore, the hydrophobic interface constructed by the hydrophobic material polytetrafluoroethylene (PTFE) effectively inhibits the occurrence of hydrogen evolution reactions, providing a significant improvement in the efficiency of CO2 electroreduction. The distinctive structures result in the remarkable hydrocarbon fuels generation with high Faraday efficiency (FE) of 67.41%, particularly for ethylene with FE of 46.08% (-1.0 V vs RHE). The superior performance of the catalyst is verified by DFT calculation with lower Gibbs free energy of the intermediate interactions with improved proton migration and selectivity to emerge the polycarbon(C2+) product. In this work, a promising and effective strategy is presented to configure MOF-based materials with tailored hydrophobic interface, high adsorption selectivity and more exposed active sites for enhancing the efficiency of the electroreduction of CO2 to C2+ products with high added value.

10.
Chem Biodivers ; 20(11): e202300998, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37755070

RESUMO

Based on the research strategy of "drug repurposing", a series of derivatives and marketed drugs that containing salicylic acid skeleton were tested for their antibacterial activities against phytopathogens. Salicylic acid can not only regulate some important growth metabolism of plants, but also induce plant disease resistance. The bioassay results showed that the salicylamides exhibited excellent antibacterial activity. Especially, oxyclozanide showed the best antibacterial effect against Xanthomonas oryzae, Xanthomonas axonopodis pv. citri and Pectobacterium atroseptica with MICs of 0.78, 3.12 and 12.5 µg.mL-1, respectively. In vivo experiments with rice bacterial leaf blight had further demonstrated that oxyclozanide exhibited stronger antibacterial activity than the commercial bactericide, thiodiazole copper. Oxyclozanide could induce plant defense responses through the determination of salicylic acid content and the activities of defense-related enzymes including CAT, POD, and SOD in rice. The preliminarily antibacterial mechanism study indicated that oxyclozanide exhibited the antibacterial activity by disrupting cell integrity and reducing bacterial pathogenicity. Additionally, oxyclozanide could induce plant defense responses through the determination of salicylic acid content.


Assuntos
Oryza , Xanthomonas , Salicilamidas/farmacologia , Reposicionamento de Medicamentos , Oxiclozanida/farmacologia , Antibacterianos/farmacologia , Oryza/microbiologia , Testes de Sensibilidade Microbiana , Ácido Salicílico/farmacologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Oxidiazóis/farmacologia
11.
Pest Manag Sci ; 79(12): 5321-5332, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37615260

RESUMO

BACKGROUND: Chemical fungicides are the mainstay of plant disease control in agricultural production, but there are a very limited number of drugs that can effectively control plant diseases. Two series of secondary amine derivatives were synthesized using the diamine skeleton combined with saturated aromatic and aliphatic aldehydes, and their antibacterial and antifungal activities against plant pathogens were determined. In addition, the antimicrobial mechanism of the highly active compound A26 was preliminarily examined against Xanthomonas oryzae (Xoo). RESULTS: Compound A26 exhibited the highest antibacterial potency among all the target compounds, with MIC values of 3.12, 3.12 and 12.5 µg mL-1 against Xoo, Xanthomonas axonopodis pv. Citri and Pseudomonas sollamacearum, respectively. In addition, compound A26 had powerful curative and protective effects against Xoo at 200 µg mL-1 , and was better than the control agent Xinjunan. Preliminary mechanistic studies showed that compound A26 reduced the bacterial pathogenicity by targeting cell membranes and inhibiting the secretion of extracellular polysaccharides. Meanwhile, the toxicity of compound A26 to Human Embryonic Kidney 293 cells and Human Liver-7702 was similar to that of Xinjunan, and it had moderate toxicity according to the World Health Organization classification standard of oral exogenous toxicity, with an LD50 of 245.47 mg kg-1 . CONCLUSION: Secondary amines have efficient and broad-spectrum antibacterial activity against plant pathogenic bacteria and are expected to be a new class of candidate compounds for antibacterial drugs. © 2023 Society of Chemical Industry.


Assuntos
Oryza , Xanthomonas , Humanos , Testes de Sensibilidade Microbiana , Oxidiazóis/química , Antibacterianos/farmacologia , Antibacterianos/química , Poliaminas/farmacologia , Doenças das Plantas
12.
Int J Food Microbiol ; 404: 110318, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37454507

RESUMO

Aspergillus flavus, a widespread saprotrophic filamentous fungus, could colonize agricultural crops with aflatoxin contamination, which endangers food security and the agricultural economy. A safe, effective and environmentally friendly fungicide is urgently needed. Pterostilbene, a natural phytoalexin originated from Pterocarpus indicus Willd., Vaccinium spp. and Vitis vinifera L., has been reported to possess excellent antimicrobial activity. More importantly, it is quite safe and healthy. In our screening tests of plant polyphenols for the inhibition of A. flavus, we found that pterostilbene evidently inhibited mycelial growth of Aspergillus flavus (EC50 = 15.94 µg/mL) and the inhibitory effect was better than that of natamycin (EC50 = 22.01 µg/mL), which is a natural product widely used in food preservation. Therefore, we provided insights into the efficacy of pterostilbene suppression on A. flavus growth, aflatoxin B1 biosynthesis and its potential mechanisms against A. flavus in the present study. Here, pterostilbene at concentrations of 250 and 500 µg/mL could effectively inhibit the infection of A. flavus on peanuts. And the biosynthesis of the secondary metabolite aflatoxin B1 was also inhibited. The antifungal effects of pterostilbene are exerted by inducing a large amount of intracellular reactive oxygen species production to bring the cells into a state of oxidative stress, damaging cellular biomolecules such as DNA, proteins and lipids and destroying the integrity of the cell membrane. Taken together, our study strongly supported the fact that pterostilbene could be considered a safe and effective antifungal agent against A. flavus infection.


Assuntos
Aflatoxinas , Aspergillus flavus , Aspergillus flavus/metabolismo , Aflatoxina B1 , Antifúngicos/farmacologia , Antifúngicos/metabolismo
13.
Eur J Med Chem ; 259: 115627, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37467619

RESUMO

Since the first natural carbazole alkaloid, murrayanine, was isolated from Mwraya Spreng, carbazole alkaloid derivatives have been widely concerned for their anti-tumor, anti-viral and anti-bacterial activities. In recent decades, a growing body of data suggest that carbazole alkaloids and their derivatives have different biological activities. This is the first comprehensive description of the antifungal and antibacterial activities of carbazole alkaloids in the past decade (2012-2022), including natural and partially synthesized carbazole alkaloids in the past decade. Finally, the challenges and problems faced by this kind of alkaloids are summarized. This paper will be helpful for further exploration of this kind of alkaloids.


Assuntos
Alcaloides , Antineoplásicos , Alcaloides/farmacologia , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Carbazóis/farmacologia , Estrutura Molecular
14.
Angew Chem Int Ed Engl ; 62(31): e202303606, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37277319

RESUMO

H2 O2 photosynthesis coupled with biomass valorization can not only maximize the energy utilization but also realize the production of value-added products. Here, a series of COFs (i.e. Cu3 -BT-COF, Cu3 -pT-COF and TFP-BT-COF) with regulated redox molecular junctions have been prepared to study H2 O2 photosynthesis coupled with furfuryl alcohol (FFA) photo-oxidation to furoic acid (FA). The FA generation efficiency of Cu3 -BT-COF was found to be 575 mM g-1 (conversion ≈100 % and selectivity >99 %) and the H2 O2 production rate can reach up to 187 000 µM g-1 , which is much higher than Cu3 -pT-COF, TFP-BT-COF and its monomers. As shown by theoretical calculations, the covalent coupling of the Cu cluster and the thiazole group can promote charge transfer, substrate activation and FFA dehydrogenation, thus boosting both the kinetics of H2 O2 production and FFA photo-oxidation to increase the efficiency. This is the first report about COFs for H2 O2 photosynthesis coupled with biomass valorization, which might facilitate the exploration of porous-crystalline catalysts in this field.

15.
Adv Sci (Weinh) ; 10(21): e2301261, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37127898

RESUMO

The efficient CO2 electroreduction into high-value products largely relies on the CO2 adsorption/activation or electron-transfer of electrocatalysts, thus site-specific functionalization methods that enable boosted related interactions of electrocatalysts are much desired. Here, an oriented coordination strategy is reported to introduce N-rich auxiliary (i.e., hexamethylenetetramine, HMTA) into metalloporphyrin metal organic frameworks (MOFs) to synthesize a series of site-specific functionalized electrocatalysts (HMTA@MOF-545-M, M = Fe, Co, and Ni) and they are successfully applied in light-assisted CO2 electroreduction. Noteworthy, thus-obtained HMTA@MOF-545-Co presents approximately two times enhanced CO2 adsorption-enthalpy and electrochemical active surface-area with largely decreased impedance-value after modification, resulting in almost twice higher CO2 electroreduction performance than its unmodified counterpart. Besides, its CO2 electroreduction performance can be further improved under light-illumination and displays superior FECO (≈100%), high CO generation rate (≈5.11 mol m-2  h-1 at -1.1 V) and energy efficiency (≈70% at -0.7 V). Theoretical calculations verify that the oriented coordination of HMTA can increase the charge density of active sites, almost doubly enhance the CO2 adsorption energy, and largely reduce the energy barrier of rate determining step for the boosted performance improvement. This work might promote the development of modifiable porous crystalline electrocatalysts in high-efficiency CO2 electroreduction.

16.
Animals (Basel) ; 13(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37106896

RESUMO

Vitamin B6 is an indispensable micronutrient in organisms and is widely distributed in blood, tissues, and organs. Changes in the content and ratio of vitamin B6 can affect the entire physiological condition of the body, so it becomes particularly important to reveal the relationship between changes in its content and disease by monitoring vitamin B6 levels in the organism. In this study, a two-dimensional liquid chromatography-UV detector (2D-LC-UV) was used to establish a method for the simultaneous detection of PLP, PA, and PL for the first time. First, PLP, PA, and PL were extracted with plasma: 0.6 M TCA: ultrapure water = 1:2:3 (v/v/v) and then derivatized. Enrichment and preliminary separation were performed on a one-dimensional column and automatically entered into a two-dimensional column for further separation. This method exhibited good selectivity, and the correlation coefficients for the analyte calibration curves were >0.99. The detection limits for PLP, PA, and PL were 0.1, 0.2, and 4 nmol/L, respectively. The results showed that the system has high loading capacity, excellent resolution, and a good peak shape. This method is expected to provide applicability for the determination of PLP, PA, and PL in pharmacological, pharmaceutical, and clinical research.

17.
BMC Oral Health ; 23(1): 196, 2023 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-37009868

RESUMO

INTRODUCTION: This study aimed to predict the fracture resistance of a mandibular first molar (MFM) with diverse endodontic cavities using finite element analysis (FEA). METHODS: Five experimental finite element models representing a natural tooth (NT) and 4 endodontically treated MFMs were generated. Treated MFM models were with a traditional endodontic cavity (TEC) and minimally invasive endodontic (MIE) cavities, including guided endodontic cavity (GEC), contracted endodontic cavity (CEC) and truss endodontic cavity (TREC). Three loads were applied, simulating a maximum bite force of 600 N (N) vertically and a normal masticatory force of 225 N vertically and laterally. The distributions of von Mises (VM) stress and maximum VM stress were calculated. RESULTS: The maximum VM stresses of the NT model were the lowest under normal masticatory forces. In endodontically treated models, the distribution of VM stress in GEC model was the most similar to NT model. The maximum VM stresses of the GEC and CEC models under different forces were lower than those of TREC and TEC models. Under vertical loads, the maximum VM stresses of the TREC model were the highest, while under the lateral load, the maximum VM stress of the TEC model was the highest. CONCLUSION: The stress distribution of tooth with GEC was most like NT. Compared with TECs, GECs and CECs may better maintain fracture resistance, TRECs, however, may have a limited effect on maintenance of the tooth resistance.


Assuntos
Cárie Dentária , Dente , Humanos , Análise de Elementos Finitos , Fenômenos Biomecânicos , Dente Molar , Análise do Estresse Dentário , Estresse Mecânico
18.
Pest Manag Sci ; 79(8): 2748-2761, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36914877

RESUMO

BACKGROUND: The unreasonable use of chemical fungicides causes common adverse consequences that not only affect the environment, but also cause resistance and resurgence problems of plant pathogens, which are extremely harmful to human health, the economy, and the environment. Based on the rich biological activities of boron-based compounds, 82 phenylboronic acid derivatives were selected and their antifungal activities against six agricultural plant pathogens were determined. Combined with transcriptomics tools, the mechanism of action of compound A49 (2-chloro-5-trifluoromethoxybenzeneboronic acid) against Botrytis cinerea Pers (B. cinerea) was studied. RESULTS: The EC50 values of compounds A24, A25, A30, A31, A36, A41, A49 and B23 against all six fungi were under 10 µg/mL. Compound A49 displayed significant activity against B. cinerea (EC50 = 0.39 µg/mL), which was better than that of commercial fungicide boscalid (EC50 = 0.55 µg/mL). A49 not only inhibited the germination of B. cinerea spores, but also caused abnormal cell morphology, loss of cell membrane integrity, enhanced cell membrane permeability, and accumulation of intracellular reactive oxygen species. Further findings showed that A49 reduced cellular antioxidant activity, and peroxidase and catalase activities. Transcriptomic results indicated that A49 could degrade intracellular redox processes and alter the metabolism of some amino acids. Meanwhile, A49 showed obvious activity in vivo and low cytotoxicity to mammal cells. CONCLUSION: The boron-containing small molecule compounds had high efficiency and broad-spectrum antifungal activities against six plant pathogens, and are expected to be candidate compounds for a new class of antifungal drugs. © 2023 Society of Chemical Industry.


Assuntos
Antifúngicos , Fungicidas Industriais , Humanos , Antifúngicos/farmacologia , Antifúngicos/química , Boro , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Botrytis , Relação Estrutura-Atividade
19.
J Agric Food Chem ; 71(5): 2301-2312, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36706432

RESUMO

A series of quinoline derivatives were designed and synthesized by the structural simplification of cryptolepine and evaluated for their fungicidal activity against six phytopathogenic fungi. Most of these compounds exhibited remarkable activities against Botrytis cinereain vitro. Among them, compounds A18 and L01 showed superior antifungal activity. Significantly, compared to cryptolepine, compound A18 exhibited broad-spectrum inhibitory activities against B. cinerea, Sclerotinia sclerotiorum, Rhizoctonia solani, Phytophthora capsica, Magnaporthe oryzae, and Fusarium graminearum with the respective EC50 values of 0.249, 1.569, 3.915, 0.505, 0.246, and 4.999 µg/mL. Compound L01 displayed the best antifungal activity against B. cinerea with an EC50 value of 0.156 µg/mL. Preliminary mechanistic studies showed that compound A18 could inhibit spore germination, affect the permeability of the cell membrane, increase the content of reactive oxygen species, and affect the morphology of hyphae and cells. Moreover, compound A18 showed excellent in vivo protective effect against B. cinerea, which was more potent than pyrimethanil and equitant to cryptolepine. These results evidenced that compound A18 displayed superior fungicidal activities and could be a potential fungicidal candidate against plant fungal diseases.


Assuntos
Fungicidas Industriais , Quinolinas , Antifúngicos/farmacologia , Fungicidas Industriais/química , Quinolinas/farmacologia , Alcaloides Indólicos/farmacologia , Botrytis , Relação Estrutura-Atividade , Fungos
20.
J Antibiot (Tokyo) ; 76(3): 131-182, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36707717

RESUMO

Epidemic diseases of crops caused by fungi deeply affected the course of human history and processed a major restriction on social and economic development. However, with the enormous misuse of existing antimicrobial drugs, an increasing number of fungi have developed serious resistance to them, making the diseases caused by pathogenic fungi even more challenging to control. Drug repurposing is an attractive alternative, it requires less time and investment in the drug development process than traditional R&D strategies. In this work, we screened 600 existing commercially available drugs, some of which had previously unknown activity against pathogenic fungi. From the primary screen at a fixed concentration of 100 µg/mL, 120, 162, 167, 85, 102, and 82 drugs were found to be effective against Rhizoctonia solani, Sclerotinia sclerotiorum, Botrytis cinerea, Phytophthora capsici, Fusarium graminearum and Fusarium oxysporum, respectively. They were divided into nine groups lead compounds, including quinoline alkaloids, benzimidazoles/carbamate esters, azoles, isothiazoles, pyrimidines, pyridines, piperidines/piperazines, ionic liquids and miscellaneous group, and simple structure-activity relationship analysis was carried out. Comparison with fungicides to identify the most promising drugs or lead structures for the development of new antifungal agents in agriculture.


Assuntos
Anti-Infecciosos , Fungicidas Industriais , Fusarium , Humanos , Fungicidas Industriais/química , Reposicionamento de Medicamentos , Antifúngicos/farmacologia , Relação Estrutura-Atividade , Anti-Infecciosos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA