Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Front Neurol ; 14: 1282059, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38046586

RESUMO

Acute necrotizing encephalopathy 1 (ANE1) is a very rare disorder associated with a dominant heterozygous mutation in the RANBP2 (RAN binding protein 2) gene. ANE1 is frequently triggered by a febrile infection and characterized by serious and irreversible neurological damage. Although only a few hundred cases have been reported, mutations in RANBP2 are only partially penetrant and can occur de novo, suggesting that their frequency may be higher in some populations. Genetic diagnosis is a lengthy process, potentially delaying definitive diagnosis. We therefore developed a rapid bedside qPCR-based tool for early diagnosis and screening of ANE1 mutations. Primers were designed to specifically assess RANBP2 and not RGPD (RANBP2 and GCC2 protein domains) and discriminate between wild-type or mutant RANBP2. Nasal epithelial cells were obtained from two individuals with known RANBP2 mutations and two healthy control individuals. RANBP2-specific reverse transcription followed by allele-specific primer qPCR amplification confirmed the specific detection of heterozygously expressed mutant RANBP2 in the ANE1 samples. This study demonstrates that allele-specific qPCR can be used as a rapid and inexpensive diagnostic tool for ANE1 using preexisting equipment at local hospitals. It can also be used to screen non-hospitalized family members and at risk-population to better establish the frequency of non-ANE-associated RANBP2 mutations, as well as possible tissue-dependent expression patterns. Systematic review registration: The protocol was registered in the international prospective register of systematic reviews (PROSPERO- CRD42023443257).

2.
Int J Mol Sci ; 25(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38203469

RESUMO

Type I interferon (IFN-I)-induced signaling plays a critical role in host antiviral innate immune responses. Despite this, the mechanisms that regulate this signaling pathway have yet to be fully elucidated. The nucleoporin Ran Binding Protein 2 (RanBP2) (also known as Nucleoporin 358 KDa, Nup358) has been implicated in a number of cellular processes, including host innate immune signaling pathways, and is known to influence viral infection. In this study, we documented that RanBP2 mediates the sumoylation of signal transducers and activators of transcription 1 (STAT1) and inhibits IFN-α-induced signaling. Specifically, we found that RanBP2-mediated sumoylation inhibits the interaction of STAT1 and Janus kinase 1 (JAK1), as well as the phosphorylation and nuclear accumulation of STAT1 after IFN-α stimulation, thereby antagonizing the IFN-α-mediated antiviral innate immune signaling pathway and promoting viral infection. Our findings not only provide insights into a novel function of RanBP2 in antiviral innate immunity but may also contribute to the development of new antiviral therapeutic strategies.


Assuntos
Interferon-alfa , Viroses , Humanos , Interferon-alfa/farmacologia , Complexo de Proteínas Formadoras de Poros Nucleares , Sumoilação , Imunidade Inata , Antivirais , Fator de Transcrição STAT1
3.
Int J Mol Sci ; 23(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35408907

RESUMO

Ran Binding Protein 2 (RanBP2 or Nucleoporin358) is one of the main components of the cytoplasmic filaments of the nuclear pore complex. Mutations in the RANBP2 gene are associated with acute necrotizing encephalopathy type 1 (ANE1), a rare condition where patients experience a sharp rise in cytokine production in response to viral infection and undergo hyperinflammation, seizures, coma, and a high rate of mortality. Despite this, it remains unclear howRanBP2 and its ANE1-associated mutations contribute to pathology. Mounting evidence has shown that RanBP2 interacts with distinct viruses to regulate viral infection. In addition, RanBP2 may regulate innate immune response pathways. This review summarizes recent advances in our understanding of how mutations in RANBP2 contribute to ANE1 and discusses how RanBP2 interacts with distinct viruses and affects viral infection. Recent findings indicate that RanBP2 might be an important therapeutic target, not only in the suppression of ANE1-driven cytokine storms, but also to combat hyperinflammation in response to viral infections.


Assuntos
Encefalopatias , Leucoencefalite Hemorrágica Aguda , Viroses , Encefalopatias/genética , Humanos , Leucoencefalite Hemorrágica Aguda/tratamento farmacológico , Leucoencefalite Hemorrágica Aguda/genética , Leucoencefalite Hemorrágica Aguda/patologia , Chaperonas Moleculares , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Viroses/genética
4.
RNA ; 28(6): 878-894, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35351812

RESUMO

Quality control of mRNA represents an important regulatory mechanism for gene expression in eukaryotes. One component of this quality control is the nuclear retention and decay of misprocessed RNAs. Previously, we demonstrated that mature mRNAs containing a 5' splice site (5'SS) motif, which is typically found in misprocessed RNAs such as intronic polyadenylated (IPA) transcripts, are nuclear retained and degraded. Using high-throughput sequencing of cellular fractions, we now demonstrate that IPA transcripts require the zinc finger protein ZFC3H1 for their nuclear retention and degradation. Using reporter mRNAs, we demonstrate that ZFC3H1 promotes the nuclear retention of mRNAs with intact 5'SS motifs by sequestering them into nuclear speckles. Furthermore, we find that U1-70K, a component of the spliceosomal U1 snRNP, is also required for the nuclear retention of these reporter mRNAs and likely functions in the same pathway as ZFC3H1. Finally, we show that the disassembly of nuclear speckles impairs the nuclear retention of reporter mRNAs with 5'SS motifs. Our results highlight a splicing independent role of U1 snRNP and indicate that it works in conjunction with ZFC3H1 in preventing the nuclear export of misprocessed mRNAs by sequestering them into nuclear speckles.


Assuntos
Sítios de Splice de RNA , Ribonucleoproteína Nuclear Pequena U1 , Salpicos Nucleares , Sítios de Splice de RNA/genética , Splicing de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteína Nuclear Pequena U1/genética , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Spliceossomos/genética , Spliceossomos/metabolismo
5.
J Biol Chem ; 297(1): 100856, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34097873

RESUMO

The nuclear pore complex is the sole gateway connecting the nucleoplasm and cytoplasm. In humans, the nuclear pore complex is one of the largest multiprotein assemblies in the cell, with a molecular mass of ∼110 MDa and consisting of 8 to 64 copies of about 34 different nuclear pore proteins, termed nucleoporins, for a total of 1000 subunits per pore. Trafficking events across the nuclear pore are mediated by nuclear transport receptors and are highly regulated. The nuclear pore complex is also used by several RNA viruses and almost all DNA viruses to access the host cell nucleoplasm for replication. Viruses hijack the nuclear pore complex, and nuclear transport receptors, to access the nucleoplasm where they replicate. In addition, the nuclear pore complex is used by the cell innate immune system, a network of signal transduction pathways that coordinates the first response to foreign invaders, including viruses and other pathogens. Several branches of this response depend on dynamic signaling events that involve the nuclear translocation of downstream signal transducers. Mounting evidence has shown that these signaling cascades, especially those steps that involve nucleocytoplasmic trafficking events, are targeted by viruses so that they can evade the innate immune system. This review summarizes how nuclear pore proteins and nuclear transport receptors contribute to the innate immune response and highlights how viruses manipulate this cellular machinery to favor infection. A comprehensive understanding of nuclear pore proteins in antiviral innate immunity will likely contribute to the development of new antiviral therapeutic strategies.


Assuntos
Imunidade Inata/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Poro Nuclear/genética , Viroses/genética , Transporte Ativo do Núcleo Celular/genética , Transporte Ativo do Núcleo Celular/imunologia , Vírus de DNA/genética , Vírus de DNA/patogenicidade , Humanos , Evasão da Resposta Imune/genética , Evasão da Resposta Imune/imunologia , NF-kappa B/genética , Poro Nuclear/imunologia , Complexo de Proteínas Formadoras de Poros Nucleares/imunologia , Vírus de RNA/genética , Vírus de RNA/patogenicidade , Proteínas não Estruturais Virais/genética , Viroses/imunologia , Viroses/virologia , Replicação Viral/genética , Replicação Viral/imunologia
6.
PLoS Genet ; 17(2): e1009378, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33600493

RESUMO

Mutations in RanBP2 (also known as Nup358), one of the main components of the cytoplasmic filaments of the nuclear pore complex, contribute to the overproduction of acute necrotizing encephalopathy (ANE1)-associated cytokines. Here we report that RanBP2 represses the translation of the interleukin 6 (IL6) mRNA, which encodes a cytokine that is aberrantly up-regulated in ANE1. Our data indicates that soon after its production, the IL6 messenger ribonucleoprotein (mRNP) recruits Argonautes bound to let-7 microRNA. After this mRNP is exported to the cytosol, RanBP2 sumoylates mRNP-associated Argonautes, thereby stabilizing them and enforcing mRNA silencing. Collectively, these results support a model whereby RanBP2 promotes an mRNP remodelling event that is critical for the miRNA-mediated suppression of clinically relevant mRNAs, such as IL6.


Assuntos
Proteínas Argonautas/genética , Fatores de Iniciação em Eucariotos/genética , Regulação da Expressão Gênica , MicroRNAs/genética , Chaperonas Moleculares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Regiões 3' não Traduzidas/genética , Proteínas Argonautas/metabolismo , Linhagem Celular Tumoral , Fatores de Iniciação em Eucariotos/metabolismo , Células HEK293 , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , MicroRNAs/metabolismo , Chaperonas Moleculares/metabolismo , Mutação , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Pancreatite Necrosante Aguda/genética , Pancreatite Necrosante Aguda/metabolismo , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sumoilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA