Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 1513, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35314691

RESUMO

Limited methods are available for investigating the reorientational dynamics of A-site cations in two-dimensional organic-inorganic hybrid perovskites (2D OIHPs), which play a pivotal role in determining their physical properties. Here, we describe an approach to study the dynamics of A-site cations using solid-state NMR and stable isotope labelling. 2H NMR of 2D OIHPs incorporating methyl-d3-ammonium cations (d3-MA) reveals the existence of multiple modes of reorientational motions of MA. Rotational-echo double resonance (REDOR) NMR of 2D OIHPs incorporating 15N- and ¹³C-labeled methylammonium cations (13C,15N-MA) reflects the averaged dipolar coupling between the C and N nuclei undergoing different modes of motions. Our study reveals the interplay between the A-site cation dynamics and the structural rigidity of the organic spacers, so providing a molecular-level insight into the design of 2D OIHPs.

2.
Adv Sci (Weinh) ; 8(14): 2100564, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34306985

RESUMO

Organometallic two-dimensional (2D) nanosheets with tailorable components have recently fascinated the optoelectronic communities due to their solution-processable nature. However, the poor stability of organic molecules may hinder their practical application in photovoltaic devices. Instead of conventional organometallic 2D nanosheets with low weatherability, an air-stable π-conjugated 2D bis(dithiolene)iron(II) (FeBHT) coordination nanosheet (CONASH) is synthesized via bottom-up liquid/liquid interfacial polymerization using benzenehexathiol (BHT) and iron(II) ammonium sulfate [Fe(NH4)2(SO4)2] as precursors. The uncoordinated thiol groups in FeBHT are easily oxidized, but the Fe(NH4)2(SO4)2 dissociation rate is slow, which facilitates the protection of sulfur groups by iron(II) ions. The density functional theory calculates that the resultant FeBHT network gains the oxygen-repelling function for oxidation suppression. In air, the FeBHT CONASH exhibits self-powered photoresponses with short response times (<40 ms) and a spectral responsivity of 6.57 mA W-1, a specific detectivity of 3.13 × 1011 Jones and an external quantum efficiency of 2.23% under 365 nm illumination. Interestingly, the FeBHT self-powered photodetector reveals extremely high long-term air stability, maintaining over 94% of its initial photocurrent after aging for 60 days without encapsulation. These results open the prospect of using organometallic 2D materials in commercialized optoelectronic fields.

3.
Nanoscale ; 12(13): 6983-6990, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32207501

RESUMO

Two-dimensional (2D) vdW materials have been integrated into optoelectronic devices to achieve exceptional functionality. However, the integration of large-area 2D thin films into organic light-emitting devices (OLEDs) remains challenging because of the finite number of inorganic 2D materials and the high-temperature requirements of their deposition process. The construction of 2D organometallic materials holds immense potential because of their solution synthesis and unlimited structural and functional diversity. Here, we report a facile route using an oil-water interfacial coordination reaction between organic ligands and divalent metal ions to synthesize crystalline quasi-2D organometallic bis(dithiolato)nickel (NiDT) nanosheets with a centimeter scale and a tunable thickness. The NiDT nanosheets can be directly integrated into OLEDs for use as a hole buffer layer and a fluorescent mounting medium without the aid of a transfer process. Moreover, OLEDs with NiDT nanosheets show not only comparable efficiency to conventional OLEDs but also prolonged device lifetime by nearly 2 times. These results open up a new dimension to use quasi-2D organometallic nanosheets as functional layers in large-area organic devices.

4.
Nat Commun ; 9(1): 3806, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30228277

RESUMO

Long-term operational stability is the foremost issue delaying the commercialization of perovskite solar cells (PSCs). Here we demonstrate an in-situ cross-linking strategy for operationally stable inverted MAPbI3 PSCs through the incorporation of a cross-linkable organic small molecule additive trimethylolpropane triacrylate (TMTA) into perovskite films. TMTA can chemically anchor to grain boundaries and then in-situ cross-link to a robust continuous network polymer after thermal treatment, thus enhancing the thermal, water-resisting and light-resisting properties of organic/perovskite films. As a result, the cross-linked PSCs exhibit 590-fold improvement in operational stability, retaining nearly 80% of their initial efficiency after continuous power output for 400 h at maximum power point under full-sun AM 1.5 G illumination of Xenon lamp without any UV-filter. In addition, under moisture or thermal (85 °C) conditions, cross-linked TMTA-based PSCs also show excellent stability with over 90% of their initial or post burn-in efficiency after aging for over 1000 h.

5.
Adv Sci (Weinh) ; 5(7): 1800159, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30027048

RESUMO

Planar heterojunction perovskite solar cells (PSCs) provide great potential for fabricating high-efficiency, low-cost, large-area, and flexible photovoltaic devices. In planar PSCs, a perovskite absorber is sandwiched between hole and electron transport materials. The charge-transporting interlayers play an important role in enhancing charge extraction, transport, and collection. Organic interlayers including small molecules and polymers offer great advantages for their tunable chemical/electronic structures and low-temperature solution processibility. Here, recent progress of organic interlayers in planar heterojunction PSCs is discussed, and the effect of chemical structures on device performance is also illuminated. Finally, the main challenges in developing planar heterojunction PSCs based on organic interlayers are identified, and strategies for enhancing the device performance are also proposed.

6.
ACS Appl Mater Interfaces ; 10(17): 14986-14992, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29671565

RESUMO

Nonfullerene polymer solar cells (PSCs) have earned widespread and intense interest on account of their properties such as tunable energy levels, potential for low-cost production processes, reduced energy losses, and strong light absorption coefficients. Here, a water-/alcohol-soluble zwitterion perylene diimide zwitterion (PDI-z) consisted of sulfobetaine ion as a terminal substituent and PDI as a conjugated core was synthesized. PDI-z was employed as an electron-transport layer (ETL) for nonfullerene PSC devices, obtaining an optimal power conversion efficiency (PCE) above 11.23%. Moreover, nonfullerene PSCs with the PDI-z cathode interlayer displayed an excellent performance on a large scale of interlayer thickness, which was compatible with printing fabrication techniques. Additionally, the PDI-z interlayer presented good ability of modifying high work function metals (for instance, Au, Cu, and Ag) in nonfullerene devices, and the Ag device displayed a PCE of 9.38%. This work provides a good alternative ETL for high-efficiency nonfullerene PSCs.

7.
ACS Appl Mater Interfaces ; 9(37): 31357-31361, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28879759

RESUMO

Here, we report that the performance of perovskite solar cells (PSCs) can be improved by aggregation control in polyelectrolytes interlayer. Through counterions tailoring and solvent optimization, the strong aggregation of polyelectrolytes P3CT-Na can be broken up by P3CT-CH3NH2. When using P3CT-CH3NH2 to replace P3CT-Na as hole transport layer, the average efficiency is greatly improved from 16.9 to 18.9% (highest 19.6%). Importantly, efficiency over 15% is obtained in 1 cm2 devices with P3CT-CH3NH2, ∼50% higher than that with P3CT-Na (10.3%). Our work demonstrates the important role of aggregation control in polyelectrolytes interlayer, providing new opportunities to promote its application in PSCs.

8.
Nano Lett ; 17(2): 1154-1160, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28094957

RESUMO

The presence of the PbI2 passivation layers at perovskite crystal grains has been found to considerably affect the charge carrier transport behaviors and device performance of perovskite solar cells. This work demonstrates the application of a novel light-modulated scanning tunneling microscopy (LM-STM) technique to reveal the interfacial electronic structures at the heterointerfaces between CH3NH3PbI3 perovskite crystals and PbI2 passivation layers of individual perovskite grains under light illumination. Most importantly, this technique enabled the first observation of spatially resolved mapping images of photoinduced interfacial band bending of valence bands and conduction bands and the photogenerated electron and hole carriers at the heterointerfaces of perovskite crystal grains. By systematically exploring the interfacial electronic structures of individual perovskite grains, enhanced charge separation and reduced back recombination were observed when an optimal design of interfacial PbI2 passivation layers consisting of a thickness less than 20 nm at perovskite crystal grains was applied.


Assuntos
Compostos de Cálcio , Chumbo/química , Imagem Óptica/métodos , Óxidos , Energia Solar , Titânio , Eletrônica , Ouro/química , Iluminação/métodos , Microscopia de Tunelamento/instrumentação , Propriedades de Superfície
9.
ACS Appl Mater Interfaces ; 8(49): 33666-33672, 2016 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960364

RESUMO

Dye-sensitized solar cells (DSSCs) present low-cost alternatives to conventional wafer-based inorganic solar cells and have remarkable power conversion efficiency. To further enhance performance, we propose a new DSSC architecture with a novel dual-functional polymer interlayer that prevents charge recombination and facilitates ionic conduction, as well as maintaining dye loading and regeneration. Poly(vinylidene fluoride-trifluoroethylene) (p(VDF-TrFE)) was coated on the outside of a dye-sensitized TiO2 photoanode by a simple solution process that did not sacrifice the amount of adsorbed dye molecules in the DSSC device. Light-intensity-modulated photocurrent and photovoltage spectroscopy revealed that the proposed p(VDF-TrFE)-coated anode yielded longer electron lifetime and improved the injection of photogenerated electrons into TiO2, thereby reducing the electron transport time. Comparative cyclic voltammetry and UV-visible absorption spectroscopy based on a ferrocene-ferrocenium external standard material demonstrated that p(VDF-TrFE) enhanced the power conversion efficiency from 7.67% to 9.11%. This dual functional p(VDF-TrFE) interlayer is a promising candidate for improving the performance of DSSCs and can also be employed in other electrochemical devices.

10.
Sci Rep ; 6: 20397, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26852670

RESUMO

The design of active and stable semiconducting composites with enhanced photoresponse from visible light to near infrared (NIR) is a key to improve solar energy harvesting for photolysis of water in photoelectrochemical cell. In this study, we prepared earth abundant semiconducting composites consisting of iron pyrite and Titanium oxide as a photoanode (FeS2/TiO2 photoanode) for photoelectrochemical applications. The detailed structure and atomic compositions of FeS2/TiO2 photoanode was characterized by high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDS), powder X-ray diffraction (XRD), inductively coupled plasma with atomic emission spectroscopy (ICPAES) and Raman spectroscopy. Through the proper sulfurization treatment, the FeS2/TiO2 photoanode exhibited high photoresponse from visible light extended to near infrared range (900 nm) as well as stable durability test for 4 hours. We found that the critical factors to enhance the photoresponse are on the elimination of surface defect of FeS2 and on the enhancement of interface charge transfer between FeS2 and TiO2. Our overall results open a route for the design of sulfur-based binary compounds for photoelectrochemical applications.

11.
Nanoscale ; 7(34): 14532-7, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26260838

RESUMO

To replace high-temperature sintered scaffold materials in conventional CH3NH3PbI3-based solar cells, this study demonstrates a new device structure of a bulk intermixing (BI)-type CH3NH3PbI3/TiO2 nanorod (NR) hybrid solar cell, where dispersed TiO2 NRs from chemical synthesis are intermixed with the perovskite absorbing layer to form a BI-type perovskite/TiO2 NR hybrid for device fabrication. Through interface engineering between the TiO2 NR surface and the photoactive perovskite material of CH3NH3PbI3 by ligand exchange treatment, a remarkable power conversion efficiency (PCE) of over 12% was achieved based on the simple BI-type CH3NH3PbI3/TiO2 NR hybrid device structure. The proposed hybrids not only provide great flexibility for deposition on various substrates through spin coating at low temperatures but also enable layer-by-layer deposition for the future development of perovskite-based multi-junction solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA