Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Plants (Basel) ; 13(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38611475

RESUMO

Seed storability has a significant impact on seed vitality and is a crucial genetic factor in maintaining seed value during storage. In this study, RNA sequencing was used to analyze the seed transcriptomes of two rice thermo-sensitive genic male sterile (TGMS) lines, S1146S (storage-tolerant) and SD26S (storage-susceptible), with 0 and 7 days of artificial accelerated aging treatment. In total, 2658 and 1523 differentially expressed genes (DEGs) were identified in S1146S and SD26S, respectively. Among these DEGs, 729 (G1) exhibited similar regulation patterns in both lines, while 1924 DEGs (G2) were specific to S1146S, 789 DEGs (G3) were specific to SD26S, and 5 DEGs (G4) were specific to contrary differential expression levels. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that "translation", "ribosome", "oxidative phosphorylation", "ATP-dependent activity", "intracellular protein transport", and "regulation of DNA-templated transcription" were significantly enriched during seed aging. Several genes, like Os01g0971400, Os01g0937200, Os03g0276500, Os05g0328632, and Os07g0214300, associated with seed storability were identified in G4. Core genes Os03g0100100 (OsPMEI12), Os03g0320900 (V2), Os02g0494000, Os02g0152800, and Os03g0710500 (OsBiP2) were identified in protein-protein interaction (PPI) networks. Seed vitality genes, MKKK62 (Os01g0699600), OsFbx352 (Os10g0127900), FSE6 (Os05g0540000), and RAmy3E (Os08g0473600), related to seed storability were identified. Overall, these results provide novel perspectives for studying the molecular response and related genes of different-storability rice TGMS lines under artificial aging conditions. They also provide new ideas for studying the storability of hybrid rice.

2.
Int J Biol Macromol ; 266(Pt 1): 131421, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38641505

RESUMO

Nowadays, few investigations on the process parameters of grafted starch synthesized using electron transfer atom transfer radical polymerization (ARGET ATRP) and its applications in warp sizing and paper-making are presented. Therefore, this study aimed to survey the appropriate process parameters of bromoisobutyryl esterified starch-g-poly(acrylic acid) (BBES-g-PAA) synthesized by the ARGET ATRP, and also aimed to provide a new biobased BBES-g-PAA adhesive. The appropriate synthesis process parameters were 1.2, 0.32, and 0.6 in the molar ratios of vitamin C, CuBr2, and pentamethyldivinyltriamine to BBES, respectively, at 40 °C for 5 h. The BBES-g-PAA samples with a grafting ratio range of 4.63-14.14 % exhibited bonding forces of 57.8-64.6 N to wool fibers [55.5 N (BBES) and 53.8 N (ATS)], and their films showed breaking elongations of 3.29-3.80 % [2.74 % (BBES) and 2.49 % (ATS)] and tensile strengths of 29.1-25.4 MPa [30.4 MPa (BBES) and 34.7 MPa (ATS)]. Compared with BBES, significantly increased bonding forces and film elongations, and decreased film strengths for the BBES-g-PAA samples with grafting ratios ≥10.54 % were displayed (p < 0.05). The time (100-42 s) taken for the BBES-g-PAA films was significantly shorter than that of ATS (246 s) and BBES (196 s) films (p < 0.05), corresponding to better desizability.


Assuntos
Polimerização , Amido , Amido/química , Resistência à Tração , Resinas Acrílicas/química , Resinas Acrílicas/síntese química , Fibra de Lã , Transporte de Elétrons , Adesivos/química , Adesivos/síntese química
3.
Int J Biol Macromol ; 260(Pt 1): 129465, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242394

RESUMO

Chitosan exhibits a wide source, non-toxic and biodegradable, and is the optimal functional raw material for preparing food packaging materials. However, the pure chitosan film has some disadvantages such as limited antibacterial activity and weak mechanical properties. In this study, sulfobetaines modified chitosan (CS-SBMA) was synthesized by grafting copolymerized betaine methacrylate sulfonate onto the chain of chitosan to improve the anti-bacterial adhesion and antibacterial properties of chitosan, aiming to develop antibacterial and anti-bacterial adhesion films based on CS-SBMA and polyvinyl alcohol (PVA) by the casting method. The structure of CS-SBMA was characterized by 1H NMR and FTIR. The appropriate proportion of CS-SBMA/PVA was determined to be 1/1 and 1/2, by characterizing the composite films with FTIR, XRD, SEM, mechanical, optical, and water resistance behaviors. In addition, CS-SBMA/PVA films showed excellent antibacterial, anti-bacterial adhesion and biofilm control function. The colonies number of E. coli and S. aureus on the surface of CS-SBMA/PVA 1/1 film decreased 94.15 % and 94.27 %, respectively, and 92.93 % of S. aureus and 94.87 % of E. coli colonies were inactivated within 60 min contact. These results indicate that CS-SBMA/PVA film exhibits potential antibacterial and anti-bacterial adhesion properties, which is suitable for food packaging materials.


Assuntos
Betaína/análogos & derivados , Quitosana , Quitosana/química , Álcool de Polivinil/química , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/química , Embalagem de Alimentos/métodos
4.
Antioxidants (Basel) ; 12(7)2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37507943

RESUMO

Heat stress (HS) has become one of the major abiotic stresses that severely constrain rice growth. Abscisic acid (ABA) plays an important role in plant development and stress response. However, the effect of different concentrations of exogenous ABA on HS tolerance in rice still needs to be further elucidated. Here, we found that high concentrations of exogenous ABA increased HS damage in seedlings, whereas 10-12 M ABA treatment increased fresh and dry weight under HS relative to mock seedlings. Our further data showed that, in response to HS, 10-5 M, ABA-treated seedlings exhibited a lower chlorophyll content, as well as transcript levels of chlorophyll biosynthesis and antioxidant genes, and increased the accumulation of reactive oxygen species (ROS). In addition, the transcript abundance of some heat-, defense-, and ABA-related genes was downregulated on 10-5 M ABA-treated seedlings under HS. In conclusion, high concentrations of exogenous ABA reduced the HS tolerance of rice seedlings, and this negative effect could be achieved by regulating the accumulation of ROS, chlorophyll biosynthesis, and the transcription levels of key genes in seedlings under HS.

5.
Int J Biol Macromol ; 245: 125577, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37379944

RESUMO

In this study, graphene oxide/N-halamine nanocomposite was synthesized through Pickering miniemulsion polymerization, which was then coated on cotton surface. The modified cotton exhibited excellent superhydrophobicity, which could effectively prevent microbial infestation and reduce the probability of hydrolysis of active chlorine, with virtually no active chlorine released in water after 72 h. Deposition of reduced graphene oxide nanosheets endowed cotton with ultraviolet-blocking properties, attributing to enhanced UV adsorption and long UV paths. Moreover, encapsulation of polymeric N-halamine resulted in improved UV stability, thus extending the life of N-halamine-based agents. After 24 h of irradiation, 85 % of original biocidal component (active chlorine content) was retained, and approximately 97 % of initial chlorine could be regenerated. Modified cotton has been proven to be an effective oxidizing material against organic pollutants and a potential antimicrobial substance. Inoculated bacteria were completely killed after 1 and 10 min of contact time, respectively. An innovative and simple scheme for determination of active chlorine content was also devised, and real-time inspection of bactericidal activity could be achieved to assure antimicrobial sustainability. Moreover, this method could be utilized to evaluate hazard classification of microbial contamination in different locations, thus broadening the application scope of N-halamine-based cotton fabrics.


Assuntos
Aminas , Antibacterianos , Fibra de Algodão , Gossypium , Látex , Nanoestruturas , Polimerização , Aminas/química , Aminas/efeitos da radiação , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/efeitos da radiação , Biofilmes/efeitos dos fármacos , Cloro/química , Corantes , Fibra de Algodão/microbiologia , Fibra de Algodão/efeitos da radiação , Desinfetantes/química , Desinfetantes/efeitos da radiação , Condutividade Elétrica , Contaminação de Equipamentos/prevenção & controle , Gossypium/química , Gossypium/microbiologia , Grafite/química , Halogenação , Interações Hidrofóbicas e Hidrofílicas , Látex/química , Látex/efeitos da radiação , Nanoestruturas/química , Nanoestruturas/efeitos da radiação , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Indústria Têxtil/métodos , Raios Ultravioleta , Água/química
6.
Front Genet ; 14: 1135577, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153001

RESUMO

Heat stress (HS) has become a major abiotic stress in rice, considering the frequency and intensity of extreme hot weather. There is an urgent need to explore the differences in molecular mechanisms of HS tolerance in different cultivars, especially in indica and japonica. In this study, we investigated the transcriptome information of IR64 (indica, IR) and Koshihikari (japonica, Kos) in response to HS at the seedling stage. From the differentially expressed genes (DEGs) consistently expressed at six time points, 599 DEGs were identified that were co-expressed in both cultivars, as well as 945 and 1,180 DEGs that were specifically expressed in IR and Kos, respectively. The results of GO and KEGG analysis showed two different HS response pathways for IR and Kos. IR specifically expressed DEGs were mainly enriched in chloroplast-related pathways, whereas Kos specifically expressed DEGs were mainly enriched in endoplasmic reticulum and mitochondria-related pathways. Meanwhile, we highlighted the importance of NO biosynthesis genes, especially nitrate reductase genes, in the HS response of IR based on protein-protein interaction networks. In addition, we found that heat shock proteins and heat shock factors play very important roles in both cultivars. This study not only provides new insights into the differences in HS responses between different subspecies of rice, but also lays the foundation for future research on molecular mechanisms and breeding of heat-tolerant cultivars.

7.
Int J Mol Sci ; 24(7)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37047228

RESUMO

Heat stress caused by rapidly changing climate warming has become a serious threat to crop growth worldwide. Exogenous cytokinin (CK) kinetin (KT) has been shown to have positive effects in improving salt and drought tolerance in plants. However, the mechanism of KT in heat tolerance in rice is poorly understood. Here, we found that exogenously adequate application of KT improved the heat stress tolerance of rice seedlings, with the best effect observed when the application concentration was 10-9 M. In addition, exogenous application of 10-9 M KT promoted the expression of CK-responsive OsRR genes, reduced membrane damage and reactive oxygen species (ROS) accumulation in rice, and increased the activity of antioxidant enzymes. Meanwhile, exogenous 10-9 M KT treatment significantly enhanced the expression of antioxidant enzymes, heat activation, and defense-related genes. In conclusion, exogenous KT treatment regulates heat tolerance in rice seedlings by modulating the dynamic balance of ROS in plants under heat stress.


Assuntos
Oryza , Termotolerância , Espécies Reativas de Oxigênio/metabolismo , Plântula/metabolismo , Antioxidantes/metabolismo , Cinetina/farmacologia , Oryza/genética , Citocininas/metabolismo , Homeostase
9.
Carbohydr Polym ; 302: 120388, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36604066

RESUMO

As cellulose is the main polysaccharide in biomass, its degradation into glucose is a major undertaking in research concerning biofuels and bio-based platform chemicals. Here, we show that pressurized HCl gas is able to efficiently hydrolyze fibers of different crystalline forms (polymorphs) of cellulose when the water content of the fibers is increased to 30-50 wt%. Simultaneously, the harmful formation of strongly chromophoric humins can be suppressed by a simple addition of chlorite into the reaction system. 50-70 % glucose yields were obtained from cellulose I and II polymorphs while >90 % monosaccharide conversion was acquired from cellulose IIIII after a mild post-hydrolysis step. Purification of the products is relatively unproblematic from a gas-solid mixture, and a gaseous catalyst is easier to recycle than the aqueous counterpart. The results lay down a basis for future practical solutions in cellulose hydrolysis where side reactions are controlled, conversion rates are efficient, and the recovery of products and reagents is effortless.


Assuntos
Celulose , Glucose , Celulose/química , Glucose/química , Catálise , Água , Biomassa , Hidrólise , Estresse Oxidativo
10.
Sensors (Basel) ; 22(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36433414

RESUMO

Density peak clustering is the latest classic density-based clustering algorithm, which can directly find the cluster center without iteration. The algorithm needs to determine a unique parameter, so the selection of parameters is particularly important. However, for multi-density data, when one parameter cannot satisfy all data, clustering often cannot achieve good results. Moreover, the subjective selection of cluster centers through decision diagrams is often not very convincing, and there are also certain errors. In view of the above problems, in order to achieve better clustering of multi-density data, this paper improves the density peak clustering algorithm. Aiming at the selection of parameter dc, the K-nearest neighbor idea is used to sort the neighbor distance of each data, draw a line graph of the K-nearest neighbor distance, and find the global bifurcation point to divide the data with different densities. Aiming at the selection of cluster centers, the local density and distance of each data point in each data division is found, a γ map is drawn, the average value of the γ height difference is calculated, and through two screenings the largest discontinuity point is found to automatically determine the cluster center and the number of cluster centers. The divided datasets are clustered by the DPC algorithm, and then the clustering results are perfected and integrated by using the cluster fusion rules. Finally, a variety of experiments are designed from various perspectives on various artificial simulated datasets and UCI real datasets, which demonstrate the superiority of the F-DPC algorithm in terms of clustering effect, clustering quality, and number of samples.


Assuntos
Algoritmos , Análise por Conglomerados
11.
J Proteome Res ; 21(11): 2635-2646, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36264770

RESUMO

Cerebral infarction (CI) remains a major cause of high mortality and long-term disability worldwide. The exploration of biomarkers and pathogenesis is crucial for the early diagnosis of CI. Although the understanding of metabolic perturbations underlying CI has increased in recent years, the relationship between altered metabolites and disease pathogenesis has only been partially elucidated and requires further investigation. In this study, we performed an integrated metabolomics and lipidomics analysis on 59 healthy subjects and 47 CI patients. Ultimately, 49 metabolite and 68 lipid biomarkers were identified and enriched in 24 disturbed pathways. The metabolic network revealed a significant interaction between altered lipids and other metabolites. Using receiver operating characteristic curve (ROC) analysis, a panel of three polar metabolites and seven lipids was optimized in the training set, which included taurine, oleoylcarnitine, creatinine, PE(22:6/P-18:0), Cer 34:2, GlcCer(d18:0/18:0), DG 44:0, LysoPC(16:0), 22:6-OH/LysoPC, and TAG58:7-FA22:4. Subsequently, a support vector machine (SVM) model was constructed and validated, which showed excellent predictive ability in the validation set. Thereby, the integrated metabolomics and lipidomics approach could contribute to a comprehensive understanding of the metabolic dyshomeostasis associated with the pathogenesis of underlying CI. The present research may promote a deeper understanding and early diagnosis of CI in the clinic. All raw data were deposited in PRIDE (PXD036199).


Assuntos
Lipidômica , Metabolômica , Humanos , Redes e Vias Metabólicas , Biomarcadores/metabolismo , Diagnóstico Precoce , Infarto Cerebral/diagnóstico
12.
Int J Biol Macromol ; 222(Pt A): 1192-1200, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183761

RESUMO

In this study, anionic GO aqueous dispersion and cationic QAS aqueous solution with specific concentrations were applied for the fabrication of modified cotton fabrics (MCFs) through the layer-by-layer self-assembly method. The chlorinated cotton fabrics with optimized protocol possessed excellent ultraviolet-blocking properties, with a UPF value of 323.08. Moreover, graphene greatly improved the UV stability of N-halamine, which could also be proved in the UV aging test of MCFs. In addition, the modification procedure also endowed cotton fabrics with superhydrophobic properties, thus broadening the application range of cotton fabric. The obtained GQC10 possessed excellent antibacterial activity, with all inoculated S. aureus and E. coli O157:H7 being completely killed within 5 min and 1 min of contact time, respectively. Indicated by the quantitative function relation between the active chlorine content (ACC) and the surface sheet resistance (SSR) of the MCFs, a novel and simple method for the determination of ACC was established. This method could be used to monitor the antimicrobial efficacy to ensure its sustainability. Furthermore, according to the variation frequency of SSR, the risk level of bacterial hazards in different places could be evaluated, thus broadening the application range of N-halamine-based antibacterial cotton fabrics.


Assuntos
Escherichia coli O157 , Grafite , Grafite/química , Staphylococcus aureus , Raios Ultravioleta , Antibacterianos/farmacologia , Antibacterianos/química , Cloro , Fibra de Algodão
13.
Anal Chim Acta ; 1229: 340359, 2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36156232

RESUMO

Magnetic thermo-responsive branched polymer (Fe3O4@poly(glycidyl methacrylate)@poly(N-isopropylacrylamide)) was fabricated for the first time and applied for microwave-assisted magnetic solid phase extraction of phenolic acids in olive oil samples followed by ultra-high performance liquid chromatography-tandem mass spectrometry analysis in multiple reaction monitoring mode. Owing to the controllable molecular weight of poly(glycidyl methacrylate) synthesized by atom transfer radical polymerization and the thermo-responsive characteristic of poly(N-isopropylacrylamide), extraction performance could be efficiently tuned and enhanced. The whole sample pretreatment process was accomplished within 1 min with the help of the microwave. The nanocomposites were characterized by transmission electron microscope, scanning electron microscope, Fourier transform infrared spectroscopy, thermogravimetric analysis, vibrating sample magnetometer, water contact angles and dynamic light scattering. The adsorption experimental data fitted well with the Freundlich isotherm model and followed the pseudo-second-order kinetic model. The factors affecting the extraction process including adsorbent amount, adsorption time, sample volume, desorption conditions and interferents were investigated and optimized. Under the most favorable conditions, the developed method showed good linearity (R2 ≥ 97.98%) in the range of 0.2-30 µg L-1, low limits of detection (0.005-0.030 µg L-1) and limits of quantification (0.016-0.098 µg L-1) as well as satisfactory precision (RSDs≤4.85%). Our proposed method was successfully used for determination of phenolic acids in olive oil samples and satisfactory recoveries at three spiked concentration levels were in the range of 84.6-108.1% with RSDs less than 9.20%. Coupled with principal component analysis, our developed method proved promising for fast and convenient differentiation between extra virgin olive oils and refined olive oils.


Assuntos
Polímeros , Extração em Fase Sólida , Adsorção , Cromatografia Líquida de Alta Pressão/métodos , Hidroxibenzoatos , Limite de Detecção , Fenômenos Magnéticos , Azeite de Oliva , Polímeros/química , Ácidos Polimetacrílicos , Extração em Fase Sólida/métodos , Água/química
14.
Genes (Basel) ; 13(6)2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35741784

RESUMO

Frequent high temperature weather affects the growth and development of rice, resulting in the decline of seed-setting rate, deterioration of rice quality and reduction of yield. Although some high temperature tolerance genes have been cloned, there is still little success in solving the effects of high temperature stress in rice (Oryza sativa L.). Based on the transcriptional data of seven time points, the weighted correlation network analysis (WGCNA) method was used to construct a co-expression network of differentially expressed genes (DEGs) between the rice genotypes IR64 (tolerant to heat stress) and Koshihikari (susceptible to heat stress). There were four modules in both genotypes that were highly correlated with the time points after heat stress in the seedling. We further identified candidate hub genes through clustering and analysis of protein interaction network with known-core genes. The results showed that the ribosome and protein processing in the endoplasmic reticulum were the common pathways in response to heat stress between the two genotypes. The changes of starch and sucrose metabolism and the biosynthesis of secondary metabolites pathways are possible reasons for the sensitivity to heat stress for Koshihikari. Our findings provide an important reference for the understanding of high temperature response mechanisms and the cultivation of high temperature resistant materials.


Assuntos
Oryza , Regulação da Expressão Gênica de Plantas/genética , Resposta ao Choque Térmico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plântula/genética , Plântula/metabolismo
15.
Plants (Basel) ; 11(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35448790

RESUMO

To elucidate the mechanism underlying the response of rice to heat stress (HS), the transcriptome profile of panicles was comparatively analyzed between the heat-tolerant line 252 (HTL252) and heat-susceptible line 082 (HSL082), two rice recombinant inbred lines (RILs). Our differentially expressed gene (DEG) analysis revealed that the DEGs are mainly associated with protein binding, catalysis, stress response, and cellular process. The MapMan analysis demonstrated that the heat-responsive (HR) genes for heat shock proteins, transcription factors, development, and phytohormones are specifically induced in HTL252 under HS. Based on the DEG analysis, the key gene OsNCED1 (Os02g0704000), which was induced under HS, was selected for further functional validation. Moreover, 9-cis-epoxycarotenoid dioxygenase (NCED) is a key rate-limiting enzyme in the ABA biosynthetic pathway. Overexpression of OsNCED1 improved the HS tolerance of rice at the heading and flowering stage. OsNCED1-overexpression plants exhibited significant increases in pollen viability, seed setting rate, superoxide dismutase (SOD) and peroxidase (POD) activities, while significantly lower electrolyte leakage and malondialdehyde (MDA) content relative to the wild type (WT). These results suggested that OsNCED1 overexpression can improve the heat tolerance of rice by enhancing the antioxidant capacity. Overall, this study lays a foundation for revealing the molecular regulatory mechanism underlying the response of rice to prolonged HS.

16.
Int J Biol Macromol ; 204: 500-509, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35167868

RESUMO

The influence of the quaternization and butyrylation on the sizing properties of biological starch macromolecule was evaluated for acquiring a new starch bio-based size [quaternized-butyrylated starch (QBS)]. The sizing properties of granular QBS samples were investigated in comparison with acid-thinned starch (ATS) and quaternized starch (QS). The QBS samples with a DS range of 0.029-0.0779 exhibited bonding strengths of 17.0-18.3 cN/tex to cotton fibers [15.5 cN/tex (ATS, DS = 0) and 16.6 cN/tex (QS, DS = 0.0240)] and 31.0-34.3 cN/tex to polyester fibers [28.0 cN/tex (ATS) and 30.1 cN/tex (QS)], and their films showed breaking elongations of 2.99-3.51% [2.59% (ATS) and 2.81% (QS)] and tensile strengths of 36.5-32.1 MPa [38.1 MPa (ATS) and 37.3 MPa (QS)]. Compared with QS, significantly increased bonding strengths as well as obviously decreased strengths and increased elongations of the films for the QBS samples with the total DS ≥ 0.0635 were exhibited. As increasing the modification levels from 0.029 to 0.0779, QBS presented paste stabilities from 90.4% to 85.7% which met with the requirement in warp sizing, and displayed higher desizing efficiencies (93.2-93.8%) than ATS (91.5%) and QS (90.2%). Based on these results, the amphiphilic quaternization-butyrylation was a good means for starch to acquire good sizing properties.


Assuntos
Fibra de Algodão , Amido , Ácidos , Resistência à Tração , Viscosidade
17.
Medicine (Baltimore) ; 101(1): e28534, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35029921

RESUMO

OBJECTIVE: Lumbar segmental instability (LSI) is due to a pathologic movement of the vertebral body on the vertebra below and often causes clinical symptoms. The study was to achieve the research progress of diagnosing methodology for lumbar segmental instability and help clinicians make treatment choices. METHODS: The data for this study were collected from the MEDLINE, Springer, Web of Science, PubMed, EMBASE, the Cochrane Central Register of Controlled Trials, Evidence Based Medicine Reviews, VIP, and CNKI. The search terms were integrated as follows: "(∗lumbar instability∗ OR ∗lumbar spondylolisthesis∗) and (∗image∗ or ∗diagnosis∗)". Studies without clear radiographic instable criteria, case reports, letter, and basic research were excluded. RESULT: In total, 39 articles published met our inclusion criteria. The various modalities were used to diagnosis LSI in these studies included radiographs, facet joint degeneration and physical examination tests. CONCLUSION: Overall, there have been a variety of researches to develop the diagnosing methodology for LSI, and many have been successful, although no consensus has been reached yet. However, it is believed that the diagnosis of LSI will become easier and more accurate in the near future.


Assuntos
Instabilidade Articular/diagnóstico , Dor Lombar/diagnóstico , Vértebras Lombares/diagnóstico por imagem , Doenças da Coluna Vertebral/diagnóstico , Espondilolistese/diagnóstico por imagem , Humanos , Radiografia
18.
Front Cell Dev Biol ; 9: 656625, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950652

RESUMO

Objective: Peroxisome proliferator-activated receptor gamma (PPARγ) has an anti-proliferation effect on pulmonary arterial smooth muscle cells (PASMCs) via the transient receptor potential channel (TRPC) and protects against pulmonary artery hypertension (PAH), whereas nuclear factor-kappa B (NF-κB) has pro-proliferation and pro-inflammation effects, which contributes to PAH. However, the association between them in PAH pathology remains unclear. Therefore, this study aimed to investigate this association and the mechanisms underlying TRPC1/6 signaling-mediated PAH. Methods: Human pulmonary arterial smooth muscle cells (hPASMCs) were transfected with p65 overexpressing (pcDNA-p65) and interfering plasmids (shp65) and incubated in normal and hypoxic conditions (4% O2 and 72 h). The effects of hypoxia and p65 expression on cell proliferation, invasion, apoptosis, [Ca2+]i, PPARγ, and TRPC1/6 expression were determined using Cell Counting Kit-8 (CCK-8), Transwell, Annexin V/PI, Fura-2/AM, and western blotting, respectively. In addition, the binding of p65 or PPARγ proteins to the TRPC6 promoter was validated using a dual-luciferase report assay, chromatin-immunoprecipitation-polymerase chain reaction (ChIP-PCR), and electrophoretic mobility shift assay (EMSA). Results: Hypoxia inhibited hPASMC apoptosis and promoted cell proliferation and invasion. Furthermore, it increased [Ca2+]i and the expression of TRPC1/6, p65, and Bcl-2 proteins. Moreover, pcDNA-p65 had similar effects on hypoxia treatment by increasing TRPC1/6 expression, [Ca2+]i, hPASMC proliferation, and invasion. The dual-luciferase report and ChIP-PCR assays revealed three p65 binding sites and two PPARγ binding sites on the promoter region of TRPC6. In addition, hypoxia treatment and shPPARγ promoted the binding of p65 to the TRPC6 promoter, whereas shp65 promoted the binding of PPARγ to the TRPC6 promoter. Conclusion: Competitive binding of NF-κB p65 and PPARγ to TRPC6 produced an anti-PAH effect.

19.
J Pharm Biomed Anal ; 206: 114369, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34551376

RESUMO

Gastroesophageal reflux disease (GERD) is a common, chronic and complex upper gastrointestinal disease. In Traditional Chinese medicine (TCM) theory, GERD is classified into two main types: stagnant heat of liver and stomach (SHLS) and deficient cold of spleen and stomach (DCSS). The discovery and evaluation of potential biomarkers for different syndrome types of GERD may contribute to comprehend specific molecular mechanism and identify new targets for diagnosis and appropriate management. In our study, 60 subjects including 40 GERD patients (20 SHLS and 20 DCSS) and 20 healthy controls were recruited, and the serum and urine metabolic profiles from untargeted liquid chromatography coupled to mass spectrometry (LC-MS) metabolomics approach were obtained. Finally 38 biomarkers associated with disease were identified and 9 metabolic pathways were enriched. The most enriched pathways were amino acid metabolism, steroid hormone biosynthesis, glycerophospholipid metabolism, sphingolipid metabolism and TCA cycle. According to the area under curve (AUC) value, we propose a cohort of three metabolites from urine and serum samples as promising biomarkers for TCM syndrome differentiation of GERD, which are prolylhydroxyproline, glycitein-4'-O-glucuronide, capsianoside I in urine and neuAcalpha2-3Galbeta-Cer (d18:1/16:0), sphinganine, arachidonic acid in serum. The cumulative AUC value of merged biomarkers in urine and serum was 0.979 (95%CI 0.927-1) and 0.842 (95%CI 0.704-0.980), respectively. The results indicated that LC-MS based metabolomic profiling method might be an effective and promising tool on further pathogenesis discovering of GERD. The findings provided new strategy for the diagnosis of GERD TCM syndrome differentiation in clinic.


Assuntos
Refluxo Gastroesofágico , Medicina Tradicional Chinesa , Biomarcadores/metabolismo , Cromatografia Líquida de Alta Pressão , Refluxo Gastroesofágico/diagnóstico , Humanos , Metaboloma , Metabolômica
20.
Artigo em Inglês | MEDLINE | ID: mdl-34200576

RESUMO

Policymakers and relevant public health authorities can analyze people's attitudes towards public health policies and events using sentiment analysis. Sentiment analysis focuses on classifying and analyzing text sentiments. A Twitter sentiment analysis has the potential to monitor people's attitudes towards public health policies and events. Here, we explore the feasibility of using Twitter data to build a surveillance system for monitoring people's attitudes towards public health policies and events since the beginning of the COVID-19 pandemic. In this study, we conducted a sentiment analysis of Twitter data. We analyzed the relationship between the sentiment changes in COVID-19-related tweets and public health policies and events. Furthermore, to improve the performance of the early trained model, we developed a data preprocessing approach by using the pre-trained model and early Twitter data, which were available at the beginning of the pandemic. Our study identified a strong correlation between the sentiment changes in COVID-19-related Twitter data and public health policies and events. Additionally, the experimental results suggested that the data preprocessing approach improved the performance of the early trained model. This study verified the feasibility of developing a fast and low-human-effort surveillance system for monitoring people's attitudes towards public health policies and events during a pandemic by analyzing Twitter data. Based on the pre-trained model and early Twitter data, we can quickly build a model for the surveillance system.


Assuntos
COVID-19 , Mídias Sociais , Atitude , Política de Saúde , Humanos , Pandemias , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA