Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 440
Filtrar
1.
Bioact Mater ; 40: 474-483, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39036348

RESUMO

Invasive tumors are difficult to be completely resected in clinical surgery due to the lack of clear resection margins, which greatly increases the risk of postoperative recurrence. However, chemotherapy and radiotherapy as the traditional means of postoperative adjuvant therapy, are limited in postoperative applications, such as multi-drug resistance and low sensitivity, etc. Therefore, an engineered magnesium alloy rod is designed as a postoperative implant to completely remove postoperative residual tumor tissue and inhibit tumor recurrence by gas and mild magnetic hyperthermia therapy (MMHT). As a reactive metal, magnesium alloy responds to the acidic tumor microenvironment by continuously generating hydrogen. The in-situ generation of hydrogen not only protects the surrounding normal tissue, but also enables the magnesium alloy to achieve MMHT under low-intensity alternating magnetic field (AMF). Furthermore, the numerous reactive oxygen species (ROS) produced by heat stress will combine with nitric oxide (NO) generated in situ, to produce more toxic reactive nitrogen species (RNS) storm. In summary, engineered magnesium alloy can completely remove residual tumor tissue and inhibit tumor recurrence by MMHT and RNS storm under low-intensity AMF, and the biodegradability of magnesium alloy makes great potential for clinical application.

2.
Ren Fail ; 46(2): 2381597, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39039856

RESUMO

BACKGROUND AND AIMS: Diabetic kidney disease (DKD) is one of the most common complications of diabetes. It is reported that mesenchymal stem cells (MSCs) derived exosomes (MSCs-Exo) may have great clinical application potential for the treatment of DKD, but the underlying mechanism has not been illustrated. To clarify the effect of MSC-Exo on NOD2 signaling pathway in podocytes under high glucose (HG) and DKD, we conduct this study. METHODS: We co-cultured podocytes and MSCs-Exo under 30 mM HG and injected MSCs-Exo into DKD mice, then we detected the NOD2 signaling pathway by western blot, qRT-PCT, immunofluorescence, transmission electron microscopy and immunohistochemistry both in vitro and in vivo. RESULTS: In vitro, HG lead to the apoptosis, increased the ROS level and activated the NOD2 signaling pathway in podocytes, while MSCs-Exo protected podocytes from injury reduced the expression of inflammatory factors including TNF-α, IL-6, IL-1ß, and IL-18 and alleviated the inflammatory response, inhibited the activation of NOD2 signaling pathway and the expression of it's downstream protein p-P65, p-RIP2, prevented apoptosis, increased cell viability in podocytes caused by HG. In vivo, MSCs-Exo alleviated renal injury in DKD mice, protected renal function, decreased urinary albumin excretion and inhibited the activation of NOD2 signaling pathway as well as the inflammation in renal tissue. CONCLUSION: MSCs-Exo protected the podocytes and DKD mice from inflammation by mediating NOD2 pathway, MSCs-Exo may provide a new target for the treatment of DKD.


Assuntos
Apoptose , Nefropatias Diabéticas , Exossomos , Células-Tronco Mesenquimais , Proteína Adaptadora de Sinalização NOD2 , Podócitos , Transdução de Sinais , Animais , Exossomos/metabolismo , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/terapia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Proteína Adaptadora de Sinalização NOD2/metabolismo , Podócitos/metabolismo , Podócitos/patologia , Masculino , Camundongos Endogâmicos C57BL , Glucose/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Técnicas de Cocultura , Transplante de Células-Tronco Mesenquimais/métodos , Espécies Reativas de Oxigênio/metabolismo , Rim/patologia , Rim/metabolismo , Diabetes Mellitus Experimental/complicações
3.
Front Genet ; 15: 1410145, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957810

RESUMO

Background: Osteosarcoma (OS) is highly malignant and prone to local infiltration and distant metastasis. Due to the poor outcomes of OS patients, the study aimed to identify differentially expressed genes (DEGs) in OS and explore their role in the carcinogenesis and progression of OS. Methods: RNA sequencing was performed to identify DEGs in OS. The functions of the DEGs in OS were investigated using bioinformatics analysis, and DEG expression was verified using RT-qPCR and Western blotting. The role of SLC25A4 was evaluated using gene set enrichment analysis (GSEA) and then investigated using functional assays in OS cells. Results: In all, 8353 DEGs were screened. GO and KEGG enrichment analyses indicated these DEGs showed strong enrichment in the calcium signaling pathway and pathways in cancer. Moreover, the Kaplan-Meier survival analysis showed ten hub genes were related to the outcomes of OS patients. Both SLC25A4 transcript and protein expression were significantly reduced in OS, and GSEA suggested that SLC25A4 was associated with cell cycle, apoptosis and inflammation. SLC25A4-overexpressing OS cells exhibited suppressed proliferation, migration, invasion and enhanced apoptosis. Conclusion: SLC25A4 was found to be significantly downregulated in OS patients, which was associated with poor prognosis. Modulation of SLC25A4 expression levels may be beneficial in OS treatment.

4.
Sci Justice ; 64(4): 377-388, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39025563

RESUMO

Necrophagous beetles are sometimes used to estimate the minimum postmortem interval (PMImin) in the decay and remains stages of a corpse. Among these, the Dermestidae is one of the most common groups used and therefore has important research and application value. In this study, the developmental events of Dermestes maculatus de Geer, 1774, were recorded at six constant temperatures, and isomorphen diagrams were established. The thermobiological parameters were estimated using linear and non-linear models, and morphological indicators such as larval body length were measured. The results showed that the developmental duration of the whole immature stage decreased from 66.13 ± 8.58 days at 19 °C to 21.9 ± 2.01 days at 34 °C. The survival rate of the immature stages, especially the egg stage, varies greatly with temperature, with the lowest survival observed at 34 °C and the highest at 22 °C. The lower developmental threshold, the intrinsic optimum temperature, and the upper lethal developmental threshold obtained by the curvilinear Optim SSI models were 15.28 °C, 28.36 °C, and 34.03 °C, respectively. The body length, head capsule width, and pronotum width showed obvious growth patterns with larval developmental duration, which were characterized by equations and isomegalen diagrams. This study provides important basic data for the application of D. maculatus to estimate the PMImin in forensic entomology in the Yangtze River Delta region of China.


Assuntos
Besouros , Entomologia Forense , Larva , Mudanças Depois da Morte , Temperatura , Animais , Besouros/crescimento & desenvolvimento , China , Larva/crescimento & desenvolvimento , Rios , Comportamento Alimentar
5.
Appl Opt ; 63(12): 3178-3185, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38856464

RESUMO

Silicon photonics devices benefit greatly from a partially etched platform and inverse design. Herein, we propose a bi-layer polarization splitter and rotator with a topology pattern and demonstrate it on a silicon-on-insulator platform. Our device exhibits a significantly reduced physical footprint of only 2µm×6µm, compared to traditional directional couplers and tapered waveguides. The device accomplishes the functions of polarization conversion and separation in such a compact design without redundant tapered or bending waveguides. The tested minimum insertion loss with the fabrication batch reaches 0.57 and 0.67 dB for TE and TM modes, respectively. The TE mode demonstrates a wider bandwidth and lower ILs than the TM modes, averaging around 1 dB from 1530 to 1565 nm. The M modes exhibit approximately 2 dB ILs at the same wavelength range, decreasing to about 1 dB between 1565 and 1580 nm. Improved designs and fabrication conditions strongly suggest the potential for further performance enhancement in the device. This successful initiative validates the exceptional performance resulting from the integration of the partially etched platform and inverse design, providing valuable insights for future photonic integrated device designs.

6.
Sci Total Environ ; 944: 174002, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38879024

RESUMO

Forest soils play a critical role in carbon (C) reservoirs and climate change mitigation globally. Exploring the driving factors of soil organic carbon (SOC) concentration and stability in forests on a large spatial scale can help us evaluate the role of forest soils in regulating C sequestration. Based on SOC quantification and solid-state 13C nuclear magnetic resonance spectroscopy, we investigated the SOC concentration and SOC chemical stability (indicated by alkyl-to-O-alkyl ratio and hydrophobic-to-hydrophilic ratio) in top 0-5 and 5-10 cm soils from 65 Chinese natural forest sites and explored their driving factors. Results showed that SOC concentration in 0-5 cm soils were highest in mixed forests but SOC chemical stability in 0-5 cm soils were highest in coniferous forests, while SOC concentration and chemical stability in 5-10 cm soil layers did not differ across forest types. SOC concentration in 0-5 cm was directly related to soil pH and soil bacterial diversity. Structural equation models showed that aridity indirectly affected SOC concentration in 0-5 cm by directly affecting soil pH. While SOC chemical stability in 0-5 cm soils was higher with increased aridity. According to the correlations, the potential mechanisms could be attributed to higher proportion of coniferous forests in more arid forest sites, lower relative abundance of O-alkyl C, higher MgO and CaO contents, and higher bacterial diversity in soils from more arid forest sites. Our study reveals the important role of aridity in mediating SOC concentration and chemical stability in top 0-5 cm soils in Chinese natural forests on a large-scale field investigation. These results will help us better understand the different mechanisms underlying SOC concentration and stability in forests and assess the feedback of forest SOC to future climate change.


Assuntos
Carbono , Florestas , Solo , Solo/química , China , Carbono/análise , Mudança Climática , Sequestro de Carbono , Monitoramento Ambiental , População do Leste Asiático
7.
Cell Biol Toxicol ; 40(1): 45, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864940

RESUMO

MALT1 has been implicated as an upstream regulator of NF-κB signaling in immune cells and tumors. This study determined the regulatory mechanisms and biological functions of MALT1 in non-small cell lung cancer (NSCLC). In cell culture and orthotopic xenograft models, MALT1 suppression via gene expression interference or protein activity inhibition significantly impaired malignant phenotypes and enhanced radiation sensitivity of NSCLC cells. CSN5, the core subunit of COP9 signalosome, was firstly verified to stabilize MALT1 via disturbing the interaction with E3 ligase FBXO3. Loss of FBXO3 in NSCLC cells reduced MALT1 ubiquitination and promoted its accumulation, which was reversed by CSN5 interference. An association between CSN5/FBXO3/MALT1 regulatory axis and poor prognosis in NSCLC patients was identified. Our findings revealed the detail mechanism of continuous MALT1 activation in NF-κB signaling, highlighting its significance as predictor and potential therapeutic target in NSCLC.


Assuntos
Complexo do Signalossomo COP9 , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa , NF-kappa B , Transdução de Sinais , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , Complexo do Signalossomo COP9/metabolismo , Complexo do Signalossomo COP9/genética , NF-kappa B/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Animais , Linhagem Celular Tumoral , Camundongos , Camundongos Nus , Ubiquitinação , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/genética , Progressão da Doença , Camundongos Endogâmicos BALB C , Feminino , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Peptídeos e Proteínas de Sinalização Intracelular
8.
ACS Nano ; 18(19): 12386-12400, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38699808

RESUMO

Current cancer vaccines face challenges due to an immunosuppressive tumor microenvironment and their limited ability to produce an effective immune response. To address the above limitations, we develop a 3-(2-spiroadamantyl)-4-methoxy-4-(3-phosphoryloxy)-phenyl-1,2-dioxetane (alkaline phosphatase substrate) and XMD8-92 (extracellular signal-regulated kinase 5 inhibitor)-codelivered copper-tetrahydroxybenzoquinone (Cu-THBQ/AX) nanosized metal-organic framework to in situ-generate therapeutic vaccination. Once inside the early endosome, the alkaline phosphatase overexpressed in the tumor cells' membrane activates the in situ type I photodynamic effect of Cu-THBQ/AX for generating •O2-, and the Cu-THBQ/AX catalyzes O2 and H2O2 to •O2- and •OH via semiquinone radical catalysis and Fenton-like reactions. This surge of ROS in early endosomes triggers caspase-3-mediated proinflammatory pyroptosis via activating phospholipase C. Meanwhile, Cu-THBQ/AX can also induce the oligomerization of dihydrolipoamide S-acetyltransferase to trigger tumor cell cuproptosis. The production of •OH could also trigger the release of XMD8-92 for effectively inhibiting the efferocytosis of macrophages to convert immunosuppressive apoptosis of cancer cells into proinflammatory secondary necrosis. The simultaneous induction of pyroptosis, cuproptosis, and secondary necrosis effectively converts the tumor microenvironment from "cold" to "hot" conditions, making it an effective antigen pool. This transformation successfully activates the antitumor immune response, inhibiting tumor growth and metastasis.


Assuntos
Vacinas Anticâncer , Cobre , Macrófagos , Estruturas Metalorgânicas , Piroptose , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Animais , Camundongos , Piroptose/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Humanos , Cobre/química , Cobre/farmacologia , Vacinas Anticâncer/química , Microambiente Tumoral/efeitos dos fármacos , Nanopartículas/química , Fagocitose/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Camundongos Endogâmicos BALB C , Eferocitose , Nanovacinas
9.
Nutrients ; 16(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38794655

RESUMO

The aim of this study was to assess the causal relationships between mineral metabolism disorders, representative of trace elements, and key aging biomarkers: telomere length (TL) and mitochondrial DNA copy number (mtDNA-CN). Utilizing bidirectional Mendelian randomization (MR) analysis in combination with the two-stage least squares (2SLS) method, we explored the causal relationships between mineral metabolism disorders and these aging indicators. Sensitivity analysis can be used to determine the reliability and robustness of the research results. The results confirmed that a positive causal relationship was observed between mineral metabolism disorders and TL (p < 0.05), while the causal relationship with mtDNA-CN was not significant (p > 0.05). Focusing on subgroup analyses of specific minerals, our findings indicated a distinct positive causal relationship between iron metabolism disorders and both TL and mtDNA-CN (p < 0.05). In contrast, disorders in magnesium and phosphorus metabolism did not exhibit significant causal effects on either aging biomarker (p > 0.05). Moreover, reverse MR analysis did not reveal any significant causal effects of TL and mtDNA-CN on mineral metabolism disorders (p > 0.05). The combination of 2SLS with MR analysis further reinforced the positive causal relationship between iron levels and both TL and mtDNA-CN (p < 0.05). Notably, the sensitivity analysis did not indicate significant pleiotropy or heterogeneity within these causal relationships (p > 0.05). These findings highlight the pivotal role of iron metabolism in cellular aging, particularly in regulating TL and sustaining mtDNA-CN, offering new insights into how mineral metabolism disorders influence aging biomarkers. Our research underscores the importance of trace element balance, especially regarding iron intake, in combating the aging process. This provides a potential strategy for slowing aging through the adjustment of trace element intake, laying the groundwork for future research into the relationship between trace elements and healthy aging.


Assuntos
DNA Mitocondrial , Análise da Randomização Mendeliana , Telômero , Humanos , DNA Mitocondrial/genética , Telômero/metabolismo , Minerais/metabolismo , Envelhecimento/genética , Variações do Número de Cópias de DNA , Oligoelementos/sangue , Ferro/metabolismo , Ferro/sangue , Biomarcadores/sangue
10.
Mol Phylogenet Evol ; 198: 108112, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38806075

RESUMO

Obtaining a robust phylogeny proves challenging due to the intricate evolutionary history of species, where processes such as hybridization and incomplete lineage sorting can introduce conflicting signals, thereby complicating phylogenetic inference. In this study, we conducted comprehensive sampling of Elsholtzieae, with a particular focus on its largest genus, Elsholtzia. We utilized 503 nuclear loci and complete plastome sequences obtained from 99 whole-genome sequencing datasets to elucidate the interspecific relationships within the Elsholtzieae. Additionally, we explored various sources of conflicts between gene trees and species trees. Fully supported backbone phylogenies were recovered, and the monophyly of Elsholtzia and Keiskea was not supported. Significant gene tree heterogeneity was observed at numerous nodes, particularly regarding the placement of Vuhuangia and the E. densa clade. Further investigations into potential causes of this discordance revealed that incomplete lineage sorting (ILS), coupled with hybridization events, has given rise to substantial gene tree discordance. Several species, represented by multiple samples, exhibited a closer association with geographical distribution rather than following a strictly monophyletic pattern in plastid trees, suggesting chloroplast capture within Elsholtzieae and providing evidence of hybridization. In conclusion, this study provides phylogenomic insights to untangle taxonomic problems in the tribe Elsholtzieae, especially the genus Elsholtzia.


Assuntos
Hibridização Genética , Lamiaceae , Filogenia , Lamiaceae/genética , Lamiaceae/classificação , Genoma de Planta
11.
Mol Biol Evol ; 41(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38768215

RESUMO

High mountains harbor a considerable proportion of biodiversity, but we know little about how diverse plants adapt to the harsh environment. Here we finished a high-quality genome assembly for Dasiphora fruticosa, an ecologically important plant distributed in the Qinghai-Tibetan Plateau and lowland of the Northern Hemisphere, and resequenced 592 natural individuals to address how this horticulture plant adapts to highland. Demographic analysis revealed D. fruticosa underwent a bottleneck after Naynayxungla Glaciation. Selective sweep analysis of two pairs of lowland and highland populations identified 63 shared genes related to cell wall organization or biogenesis, cellular component organization, and dwarfism, suggesting parallel adaptation to highland habitats. Most importantly, we found that stronger purging of estimated genetic load due to inbreeding in highland populations apparently contributed to their adaptation to the highest mountain. Our results revealed how plants could tolerate the extreme plateau, which could provide potential insights for species conservation and crop breeding.


Assuntos
Genoma de Planta , Seleção Genética , Adaptação Fisiológica/genética , Altitude
12.
Nat Plants ; 10(6): 901-909, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38740944

RESUMO

Carbon influences the evolution and functioning of plants and their roots. Previous work examining a small number of commonly measured root traits has revealed a global multidimensionality of the resource economics traits in fine roots considering carbon as primary currency but without considering the diversity of carbon-related traits. To address this knowledge gap, we use data from 66 tree species from a tropical forest to illustrate that root economics space co-varies with a novel molecular-level traits space based on nuclear magnetic resonance. Thinner fine roots exhibit higher proportions of carbohydrates and lower diversity of molecular carbon than thicker roots. Mass-denser fine roots have more lignin and aromatic carbon compounds but less bioactive carbon compounds than lighter roots. Thus, the transition from thin to thick fine roots implies a shift in the root carbon economy from 'do-it-yourself' soil exploration to collaboration with mycorrhizal fungi, while the shift from light to dense fine roots emphasizes a shift from acquisitive to conservative root strategy. We reveal a previously undocumented role of molecular-level carbon traits that potentially undergird the multidimensional root economics space. This finding offers new molecular insight into the diversity of root form and function, which is fundamental to our understanding of plant evolution, species coexistence and adaptations to heterogeneous environments.


Assuntos
Carbono , Raízes de Plantas , Árvores , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Carbono/metabolismo , Árvores/metabolismo , Florestas
13.
Biotechnol Lett ; 46(4): 713-724, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38733438

RESUMO

Methanotrophs of the genus Methylocystis are frequently found in rice paddies. Although more than ten facultative methanotrophs have been reported since 2005, none of these strains was isolated from paddy soil. Here, a facultative methane-oxidizing bacterium, Methylocystis iwaonis SD4, was isolated and characterized from rhizosphere samples of rice plants in Nanjing, China. This strain grew well on methane or methanol but was able to grow slowly using acetate or ethanol. Moreover, strain SD4 showed sustained growth at low concentrations of methane (100 and 500 ppmv). M. iwaonis SD4 could utilize diverse nitrogen sources, including nitrate, urea, ammonium as well as dinitrogen. Strain SD4 possessed genes encoding both the particulate methane monooxygenase and the soluble methane monooxygenase. Simple and rapid genetic manipulation methods were established for this strain, enabling vector transformation and unmarked genetic manipulation. Fast growth rate and efficient genetic tools make M. iwaonis SD4 an ideal model to study facultative methanotrophs, and the ability to grow on low concentration of methane implies its potential in methane removal.


Assuntos
Metano , Methylocystaceae , Oryza , Rizosfera , Microbiologia do Solo , Oryza/microbiologia , Methylocystaceae/genética , Methylocystaceae/metabolismo , Methylocystaceae/isolamento & purificação , Metano/metabolismo , Oxigenases/genética , Oxigenases/metabolismo , China , Metanol/metabolismo
14.
Clin Cancer Res ; 30(14): 3059-3072, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38723277

RESUMO

PURPOSE: The rising global high incidence of differentiated thyroid carcinoma (DTC) has led to a significant increase in patients presenting with lung metastasis of DTC (LMDTC). This population poses a significant challenge in clinical practice, necessitating the urgent development of effective risk stratification methods and predictive tools for lung metastasis. EXPERIMENTAL DESIGN: Through proteomic analysis of large samples of primary lesion and dual validation employing parallel reaction monitoring and IHC, we identified eight hub proteins as potential biomarkers. By expanding the sample size and conducting statistical analysis on clinical features and hub protein expression, we constructed three risk prediction models. RESULTS: This study identified eight hub proteins-SUCLG1/2, DLAT, IDH3B, ACSF2, ACO2, CYCS, and VDAC2-as potential biomarkers for predicting LMDTC risk. We developed and internally validated three risk prediction models incorporating both clinical characteristics and hub protein expression. Our findings demonstrated that the combined prediction model exhibited optimal predictive performance, with the highest discrimination (AUC: 0.986) and calibration (Brier score: 0.043). Application of the combined prediction model within a specific risk threshold (0-0.97) yielded maximal clinical benefit. Finally, we constructed a nomogram based on the combined prediction model. CONCLUSIONS: As a large sample size study in LMDTC research, the identification of biomarkers through primary lesion proteomics and the development of risk prediction models integrating clinical features and hub protein biomarkers offer valuable insights for predicting LMDTC and establishing personalized treatment strategies.


Assuntos
Biomarcadores Tumorais , Neoplasias Pulmonares , Nomogramas , Proteômica , Neoplasias da Glândula Tireoide , Humanos , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/diagnóstico , Biomarcadores Tumorais/metabolismo , Proteômica/métodos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/diagnóstico , Feminino , Masculino , Pessoa de Meia-Idade , Medição de Risco/métodos , Prognóstico , Adulto , Idoso
15.
ACS Appl Mater Interfaces ; 16(19): 24221-24234, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38709623

RESUMO

Clinical studies have continually referred to the involvement of drug carrier having dramatic negative influences on the biocompatibility, biodegradability, and loading efficacy of hydrogel. To overcome this deficiency, researchers have proposed to directly self-assemble natural herbal small molecules into a hydrogel without any structural modification. However, it is still a formidable challenge due to the high requirements on the structure of natural molecules, leading to a rarity of this type of hydrogel. Mangiferin (MF) is a natural polyphenol of C-glucoside xanthone with various positive health benefits, including the treatment of diabetic wounds, but its poor hydrosolubility and low bioavailability significantly restrict the clinical application. Inspired by these, with heating/cooling treatment, a carrier-free hydrogel (MF-gel) is developed by assembling the natural herbal molecule mangiferin, which is mainly governed through hydrogen bonds and intermolecular π-π stacking interactions. The as-prepared hydrogel has injectable and self-healing properties and shows excellent biocompatibility, continuous release ability, and reversible stimuli-responsive performances. All of the superiorities enable the MF-based hydrogel to serve as a potential wound dressing for treating diabetic wounds, which was further confirmed by both the vitro and vivo studies. In vitro, the MF-gel could promote the migration of healing-related cells from peripheral as well as the angiogenesis and displays the capacity of mediating inflammation response by scavenging the intracellular ROS. In vivo, the MF-gel accelerates wound contraction and healing via inflammatory adjustment, collagen deposition, and angiogenesis. This study provides a facile and effective method for diabetic wound management and emphasizes the direct self-assembly hydrogel from natural herbal small molecule.


Assuntos
Hidrogéis , Cicatrização , Xantonas , Xantonas/química , Xantonas/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Humanos , Camundongos , Diabetes Mellitus Experimental/tratamento farmacológico , Ratos , Masculino
16.
Sci Total Environ ; 935: 173433, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38782288

RESUMO

The concentration of chlorophyll-a (Chl-a) in seawater reflects phytoplankton growth and water eutrophication, which are usually assessed for evaluation of primary productivity and carbon source/sink of coral reefs. However, the precise delineation of Chl-a concentration in coral reefs remains a challenge when ocean satellites with low spatial resolution are utilized. In this study, a remote sensing inversion model for Chl-a was developed in fringing reefs (R2 = 0.76, RMSE =0.41 µg/L, MRE = 14 %) and atolls (R2 = 0.79, RMSE =0.02 µg/L, MRE = 8 %), utilizing reflectance data from the sensitive band of the Landsat-8 Operational Land Imagers (OLI) with a spatial resolution of 30 m. The aforementioned model was utilized to invert high-resolution distribution maps of Chl-a concentration in six major coral reef regions of the South China Sea from 2013 to 2022 and subsequently used to analyze the variations in Chl-a concentration and its influencing factors. The results indicate a Chl-a concentration gradient among coral reefs Daya Bay, Weizhou Island, Luhuitou, Xuwen, Huangyan Island, and Xisha Island in that order. The Chl-a concentration in coral reefs exhibited an overall increasing trend, with significant seasonal fluctuations, characterized by higher concentrations during winter and spring and lower concentrations during summer and autumn. The concentration of Chl-a in coral reefs was positively correlated with the average wind speed.


Assuntos
Clorofila A , Recifes de Corais , Monitoramento Ambiental , Imagens de Satélites , China , Clorofila A/análise , Água do Mar/química , Clorofila/análise , Tecnologia de Sensoriamento Remoto , Fitoplâncton , Eutrofização
17.
BMC Geriatr ; 24(1): 420, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734596

RESUMO

BACKGROUND: Sarcopenia and cognitive impairment have been linked in prior research, and both are linked to an increased risk of mortality in the general population. Muscle mass is a key factor in the diagnosis of sarcopenia. The relationship between low muscle mass and cognitive function in the aged population, and their combined impact on the risk of death in older adults, is currently unknown. This study aimed to explore the correlation between low muscle mass and cognitive function in the older population, and the relationship between the two and mortality in older people. METHODS: Data were from the National Health and Nutrition Examination Survey 1999-2002. A total of 2540 older adults aged 60 and older with body composition measures were included. Specifically, 17-21 years of follow-up were conducted on every participant. Low muscle mass was defined using the Foundation for the National Institute of Health and the Asian Working Group for Sarcopenia definitions: appendicular lean mass (ALM) (< 19.75 kg for males; <15.02 kg for females); or ALM divided by body mass index (BMI) (ALM: BMI, < 0.789 for males; <0.512 for females); or appendicular skeletal muscle mass index (ASMI) (< 7.0 kg/m2 for males; <5.4 kg/m2 for females). Cognitive functioning was assessed by the Digit Symbol Substitution Test (DSST). The follow-up period was calculated from the NHANES interview date to the date of death or censoring (December 31, 2019). RESULTS: We identified 2540 subjects. The mean age was 70.43 years (43.3% male). Age-related declines in DSST scores were observed. People with low muscle mass showed lower DSST scores than people with normal muscle mass across all age groups, especially in the group with low muscle mass characterized by ALM: BMI (60-69 years: p < 0.001; 70-79 years: p < 0.001; 80 + years: p = 0.009). Low muscle mass was significantly associated with lower DSST scores after adjusting for covariates (ALM: 43.56 ± 18.36 vs. 47.56 ± 17.44, p < 0.001; ALM: BMI: 39.88 ± 17.51 vs. 47.70 ± 17.51, p < 0.001; ASMI: 41.07 ± 17.89 vs. 47.42 ± 17.55, p < 0.001). At a mean long-term follow-up of 157.8 months, those with low muscle mass were associated with higher all-cause mortality (ALM: OR 1.460, 95% CI 1.456-1.463; ALM: BMI: OR 1.452, 95% CI 1.448-1.457); ASMI: OR 3.075, 95% CI 3.063-3.088). In the ALM: BMI and ASMI-defined low muscle mass groups, participants with low muscle mass and lower DSST scores were more likely to incur all-cause mortality ( ALM: BMI: OR 0.972, 95% CI 0.972-0.972; ASMI: OR 0.957, 95% CI 0.956-0.957). CONCLUSIONS: Low muscle mass and cognitive function impairment are significantly correlated in the older population. Additionally, low muscle mass and low DSST score, alone or in combination, could be risk factors for mortality in older adults.


Assuntos
Cognição , Inquéritos Nutricionais , Sarcopenia , Humanos , Masculino , Feminino , Sarcopenia/epidemiologia , Sarcopenia/mortalidade , Idoso , Estados Unidos/epidemiologia , Pessoa de Meia-Idade , Cognição/fisiologia , Idoso de 80 Anos ou mais , Músculo Esquelético/patologia , Mortalidade/tendências , Disfunção Cognitiva/epidemiologia , Composição Corporal/fisiologia , Índice de Massa Corporal , Seguimentos
18.
Angew Chem Int Ed Engl ; 63(25): e202405239, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38634305

RESUMO

The evolution of two-dimensional conjugated metal-organic frameworks (2D c-MOFs) provides a significant prospect for researching the next generation of green and advanced energy storage systems (ESSs). Especially, conjugation and topology engineering serve as an irreplaceable character in adjusting the electrochemical properties of ESSs. Herein, we proposed a novel strategy using conjugation and topology engineering to demonstrate the application of 2D c-MOFs in robust potassium-ion batteries (PIBs) for the first time. By comparing 2D c-MOFs with the rhombus/kagome structure as well as three/four-arm core, the rhombus structure (sql-Cu-TBA-MOF) cathode for PIBs can display the impressive electrochemical performance, including a high specific discharge capacity of 178.4 mAh g-1 (at 0.2 A g-1) and a well long-term cycle stability of more than 9,000 (at 10.0 A g-1). Moreover, full PIBs (FPIBs) are constructed by pairing sql-Cu-TBA-MOF cathode with dipotassium terephthalate (KTP) anode, which delivers a high reversible discharge specific capacity of 146.6 mAh g-1 (at 0.1 A g-1) and great practical application prospect. These findings provide reasonable implications for the design of 2D c-MOFs from the perspective of conjugation and topology engineering for advanced energy storage systems.

19.
Microorganisms ; 12(4)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38674681

RESUMO

As a disease causing a global pandemic, the progression of symptoms to severe disease in patients with COVID-19 often has adverse outcomes, but research on the immunopathology of COVID-19 severe disease remains limited. In this study, we used mRNA-seq data from the peripheral blood of COVID-19 patients to identify six COVID-19 severe immune characteristic genes (FPR1, FCGR2A, TLR4, S100A12, CXCL1, and L TF), and found neutrophils to be the critical immune cells in COVID-19 severe disease. Subsequently, using scRNA-seq data from bronchoalveolar lavage fluid from COVID-19 patients, neutrophil subtypes highly expressing the S100A family were found to be located at the end of cellular differentiation and tended to release neutrophil extracellular traps. Finally, it was also found that alveolar macrophages, macrophages, and monocytes with a high expression of COVID-19 severe disease immune characteristic genes may influence neutrophils through intercellular ligand-receptor pairs to promote neutrophil extracellular trap release. This study provides immune characteristic genes, critical immune pathways, and immune cells in COVID-19 severe disease, explores intracellular immune transitions of critical immune cells and pit-induced intercellular communication of immune transitions, and provides new biomarkers and potential drug targets for the treatment of patients with COVID-19 severe disease.

20.
Talanta ; 274: 126013, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569373

RESUMO

Successful construction of a detection method for Salmonella typhimurium (S. typhimurium) based on the synergy of hybridization chain reaction (HCR) and fluorescence was realized in this paper. First, the aptamer modified with the quenching group Black Hole Quencher-1 acid (BHQ1) was immobilized on the magnetic beads in combination with the complementary chain of the aptamer modified with 6-carboxyfluorescein (6-FAM). Second, S. typhimurium and cDNA-6-FAM immobilized on magnetic beads competitively bound to the aptamer. Finally, the cDNA-6-FAM was released after magnetic separation acted as a promoter to trigger HCR amplification when the target presented. The fluorescence signal could be significantly improved by the combination of green SYBR Green I (SGI) and HCR long double-stranded DNA and the fluorescent synergy of 6-FAM and SGI. Because of the separation of target and its aptamer, the trigger strand was abstracted by magnetic separation. There was no HCR to generate long double-stranded DNA, and the fluorescence of excess hairpin/SGI could be adsorbed through UIO66 so that only a very low background signal was detected. This fluorescent sensor was capable of monitoring S. typhimurium in the range of 10-3.2 × 107 CFU mL-1 with a limit of detection as low as 1.5 CFU mL-1. Because of the excellent properties of the aptasensor and the validity of SGI fluorescence synergy, this HCR enzyme-free amplification strategy could be generalized to other areas.


Assuntos
Aptâmeros de Nucleotídeos , Salmonella typhimurium , Salmonella typhimurium/isolamento & purificação , Aptâmeros de Nucleotídeos/química , Fluorescência , Limite de Detecção , Corantes Fluorescentes/química , Técnicas Biossensoriais/métodos , Espectrometria de Fluorescência/métodos , Hibridização de Ácido Nucleico , Fluoresceínas/química , Estruturas Metalorgânicas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA