RESUMO
BACKGROUND: Severe peripheral nerve injury (PNI) often leads to significant movement disorders and intractable pain. Therefore, promoting nerve regeneration while avoiding neuropathic pain is crucial for the clinical treatment of PNI patients. However, established animal models for peripheral neuropathy fail to accurately recapitulate the clinical features of PNI. Additionally, researchers usually investigate neuropathic pain and axonal regeneration separately, leaving the intrinsic relationship between the development of neuropathic pain and nerve regeneration after PNI unclear. To explore the underlying connections between pain and regeneration after PNI and provide potential molecular targets, we performed single-cell RNA sequencing and functional verification in an established rat model, allowing simultaneous study of the neuropathic pain and axonal regeneration after PNI. RESULTS: First, a novel rat model named spared nerve crush (SNC) was created. In this model, two branches of the sciatic nerve were crushed, but the epineurium remained unsevered. This model successfully recapitulated both neuropathic pain and axonal regeneration after PNI, allowing for the study of the intrinsic link between these two crucial biological processes. Dorsal root ganglions (DRGs) from SNC and naïve rats at various time points after SNC were collected for single-cell RNA sequencing (scRNA-seq). After matching all scRNA-seq data to the 7 known DRG types, we discovered that the PEP1 and PEP3 DRG neuron subtypes increased in crushed and uncrushed DRG separately after SNC. Using experimental design scRNA-seq processing (EDSSP), we identified Adcyap1 as a potential gene contributing to both pain and nerve regeneration. Indeed, repeated intrathecal administration of PACAP38 mitigated pain and facilitated axonal regeneration, while Adcyap1 siRNA or PACAP6-38, an antagonist of PAC1R (a receptor of PACAP38) led to both mechanical hyperalgesia and delayed DRG axon regeneration in SNC rats. Moreover, these effects can be reversed by repeated intrathecal administration of PACAP38 in the acute phase but not the late phase after PNI, resulting in alleviated pain and promoted axonal regeneration. CONCLUSIONS: Our study reveals that Adcyap1 is an intrinsic protective factor linking neuropathic pain and axonal regeneration following PNI. This finding provides new potential targets and strategies for early therapeutic intervention of PNI.
Assuntos
Axônios , Neuralgia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Animais , Ratos , Axônios/fisiologia , Gânglios Espinais/fisiologia , Regeneração Nervosa/genética , Neuralgia/genética , Neurônios , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Fatores de Proteção , Ratos Sprague-Dawley , Análise de Sequência de RNARESUMO
Electroacupuncture may play a role in treatment of learning and memory impairment after ischemic stroke by regulating phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA)/cAMP response element binding protein (CREB) signaling pathway, nerve growth factor (NGF)/tyrosine kinase-A (TrkA) signaling pathway, Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway, Notch signaling pathway, erythropoietin-producing hepatocyte (Eph)/ephrin signaling pathway. The interactions among these pathways should be further explored in treatment of learning and memory impairment after ischemic stroke.
Assuntos
Eletroacupuntura , AVC Isquêmico , Humanos , Aprendizagem , Transdução de Sinais/fisiologiaRESUMO
Epigenetic modifications are involved in the onset, development, and maintenance of pain; however, the precise epigenetic mechanism underlying pain regulation remains elusive. Here it is reported that the epigenetic factor chromodomain Y-like (CDYL) is crucial for pain processing. Selective knockout of CDYL in sensory neurons results in decreased neuronal excitability and nociception. Moreover, CDYL facilitates histone 3 lysine 27 trimethylation (H3K27me3) deposition at the Kcnb1 intron region thus silencing voltage-gated potassium channel (Kv ) subfamily member Kv 2.1 transcription. Loss function of CDYL enhances total Kv and Kv 2.1 current density in dorsal root ganglia and knockdown of Kv 2.1 reverses the pain-related phenotypes of Cdyl deficiency mice. Furthermore, focal administration of a novel potent CDYL antagonist blunts nociception and attenuates neuropathic pain. These findings reveal that CDYL is a critical regulator of pain sensation and shed light on the development of novel analgesics targeting epigenetic mechanisms.
Assuntos
Proteínas Correpressoras , Hidroliases , Nociceptividade , Canais de Potássio Shab , Animais , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Histonas/genética , Hidroliases/genética , Hidroliases/metabolismo , Camundongos , Células Receptoras Sensoriais/metabolismo , Canais de Potássio Shab/genéticaRESUMO
RATIONALE: ßARs (ß-adrenergic receptors) are prototypical GPCRs (G protein-coupled receptors) that play a pivotal role in sympathetic regulation. In heart cells, ß1AR signaling mediates a global response, including both l-type Ca2+ channels in the sarcolemma/T tubules and RyRs (ryanodine receptors) in the SR (sarcoplasmic reticulum). In contrast, ß2AR mediates local signaling with little effect on the function of SR proteins. OBJECTIVE: To investigate the signaling relationship between ß1ARs and ß2ARs. METHOD AND RESULTS: Using whole-cell patch-clamp analyses combined with confocal Ca2+ imaging, we found that the activation of compartmentalized ß2AR signaling was able to convert the ß1AR signaling from global to local mode, preventing ß1ARs from phosphorylating RyRs that were only nanometers away from sarcolemma/T tubules. This offside compartmentalization was eliminated by selective inhibition of ß2AR, GRK2 (GPCR kinase-2), ßarr1 (ß-arrestin-1), and phosphodiesterase-4. A knockin rat model harboring mutations of the last 3 serine residues of the ß1AR C terminus, a component of the putative ßarr1 binding site and GRK2 phosphorylation site, eliminated the offside compartmentalization conferred by ß2AR activation. CONCLUSIONS: ß2AR stimulation compartmentalizes ß1AR signaling into nanoscale local domains in a phosphodiesterase-4-dependent manner by targeting the C terminus of ß1ARs. This finding reveals a fundamental negative feed-forward mechanism that serves to avoid the cytotoxicity of circulating catecholamine and to sharpen the transient ß1AR response of sympathetic excitation.
Assuntos
Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Adrenérgicos/farmacologia , Animais , Células Cultivadas , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Masculino , Mutação , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Ratos Transgênicos , Receptores Adrenérgicos beta 1/química , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 2/genética , Sarcolema/efeitos dos fármacos , Sarcolema/metabolismo , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
The first synthesis of the tetracyclic aromatic compound furo[2,3- g]thieno[2,3- e]indole ("FTI") is described. The synthetic strategy features a photochemical benzannulation based on the reaction of an α-diazo ketone and ynamide which assembles a benzothiophene equipped with substituents that enable subsequent cyclizations to generate the nitrogen and oxygen heterocyclic rings.
RESUMO
Chemotherapy of bladder cancer has limited efficacy because of the short retention time of drugs in the bladder during therapy. In this research, nanoparticles (NPs) with a new core/shell/corona nanostructure have been synthesized, consisting of iron oxide (Fe3O4) as the core to providing magnetic properties, drug (doxorubicin) loaded calcium phosphate (CaP) as the shell for pH-responsive release, and arginylglycylaspartic acid (RGD)-containing peptide functionalized alginate as the corona for cell targeting (with the composite denoted as RGD-Fe3O4/CaP/Alg NPs). We have optimized the reaction conditions to obtain RGD-Fe3O4/CaP/Alg NPs with high biocompatibility and suitable particle size, surface functionality, and drug loading/release behavior. The results indicate that the RGD-Fe3O4/CaP/Alg NPs exhibit enhanced chemotherapy efficacy toward T24 bladder cancer cells, owing to successful magnetic guidance, pH-responsive release, and improved cellular uptake, which give these NPs great potential as therapeutic agents for future in vivo drug delivery systems.
RESUMO
Inorganic hydroxyapatite nanoparticles (HANPs) and two kinds of organic biomolecules (i.e., fluorescent dye rhodamine 6G and protein lysozyme) were coencapsulated into alginate microspheres through an air dynamical atomization with optimized operation conditions. The synthesized microspheres have several advantages: HANP provides osteoconductivity and mechanical strength, rhodamine 6G (R6G) and lysozyme act as model drugs, and alginate provides excellent biocompatibility and carboxylate functionality. The results of fluorescent microscopic images indicated the successful dual encapsulation of HANPs and lysozyme inside the alginate microspheres. Furthermore, the results of 3- (4,5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay showed that the fabricated alginate microspheres could be uptaken by HepG2 without apparent cytotoxicity. The dual encapsulated alginate microspheres fabricated in this study show great potential in many biomedical applications.
Assuntos
Alginatos , Durapatita , Hepatócitos/metabolismo , Microesferas , Nanopartículas/química , Nanopartículas/metabolismo , Nanotecnologia/métodos , Sobrevivência Celular/efeitos dos fármacos , Endocitose , Ácido Glucurônico , Células Hep G2 , Ácidos Hexurônicos , Humanos , Nanopartículas/toxicidadeRESUMO
Highly substituted polycyclic aromatic and heteroaromatic compounds are produced via a two-stage tandem benzannulation/cyclization strategy. The initial benzannulation step proceeds via a pericyclic cascade mechanism triggered by thermal or photochemical Wolff rearrangement of a diazo ketone. The photochemical process can be performed using a continuous flow reactor which facilitates carrying out reactions on a large scale and minimizes the time required for photolysis. Carbomethoxy ynamides as well as more ketenophilic bis-silyl ynamines and N-sulfonyl and N-phosphoryl ynamides serve as the reaction partner in the benzannulation step. In the second stage of the strategy, RCM generates benzofused nitrogen heterocycles, and various heterocyclization processes furnish highly substituted and polycyclic indoles of types that were not available by using the previous cyclobutenone-based version of the tandem strategy.
Assuntos
Amidas/química , Compostos Azo/química , Compostos Heterocíclicos/síntese química , Cetonas/química , Hidrocarbonetos Policíclicos Aromáticos/síntese química , Ciclização , Compostos Heterocíclicos/química , Estrutura Molecular , Processos Fotoquímicos , Hidrocarbonetos Policíclicos Aromáticos/químicaRESUMO
A two-stage "tandem strategy" for the synthesis of indoles with a high level of substitution on the six-membered ring is described. Benzannulation based on the reaction of cyclobutenones with ynamides proceeds via a cascade of four pericyclic reactions to produce multiply substituted aniline derivatives in which the position ortho to the nitrogen can bear a wide range of functionalized substituents. In the second stage of the tandem strategy, highly substituted indoles are generated via acid-, base-, and palladium-catalyzed cyclization and annulation processes.
Assuntos
Amidas/química , Indóis/síntese química , Cetonas/química , Compostos de Vinila/química , Indóis/química , Estrutura MolecularRESUMO
The first synthesis of 2-iodoynamides is described as well as the first [2+2] cycloadditions of ketene with iodo alkynes.
RESUMO
In an effort to elucidate the mechanism of movement of nanovehicles on nonconducting surfaces, the synthesis and optical properties of five fluorescently tagged nanocars are reported. The nanocars were specifically designed for studies by single-molecule fluorescence spectroscopy and bear a tetramethylrhodamine isothiocyanate fluorescent tag for excitation at 532 nm. The molecules were designed such that the arrangement of their molecular axles and p-carborane wheels relative to the chassis would be conducive to the control of directionality in the motion of these nanovehicles.