Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Plants (Basel) ; 13(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611515

RESUMO

The optimized winter wheat sowing method comprising wide-belt sowing (WBS) can improve the ears number and biomass to increase the grain yield, compared with conventional narrow-drill sowing (NDS). The seed rate and the interaction between the sowing method and seed rate also affect yield formation. However, the effects of the sowing method and seed rate, as well as their interaction on biomass production, particularly the interception of solar radiation (ISR) and radiation use efficiency (RUE), are unclear. A field experiment was conducted for two seasons in southern Shanxi province, China, using a split-plot design with sowing method as the main plot (WBS and NDS) and seed rate as the sub-plot (100-700 m-2). Our results showed that while WBS had a significant and positive effect, increasing the yield by 4.7-15.4%, the mechanism differed between seed rates. Yield increase by WBS was mainly attributed to the increase in total biomass resulting from both the promoted pre- and post-anthesis biomass production, except that only the increase in post-anthesis biomass mattered at the lowest seed rate (100 m-2). The higher biomass was attributed to the increased ISR before anthesis. After anthesis, the increased ISR contributed mainly to the increased biomass at low seed rates (100 and 200 m-2). In contrast, the increased RUE, resulting from the enhanced radiation distribution within canopy and LAI, contributed to the higher post-anthesis biomass at medium and high seed rates (400 to 700 m-2). The greatest increases in total biomass, pre-anthesis ISR, and post-anthesis RUE by WBS were all achieved at 500 seed m-2, thereby obtaining the highest yield. In summary, WBS enhanced grain yield by increasing ISR before anthesis and improving RUE after anthesis, and adopting relatively higher seed rates (400-500 m-2) was necessary for maximizing the positive effect of WBS, and thus the higher wheat yield.

2.
J Phys Chem Lett ; 14(40): 8930-8939, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37768131

RESUMO

Strongly correlated systems containing d/f electrons present a challenge to conventional density functional theory such as the local density approximation or generalized gradient approximation. We developed a doubly screened Coulomb correction (DSCC) approach to perform on-site Coulomb interaction correction for strongly correlated materials. The on-site Coulomb interaction between localized d/f electrons is self-consistently determined from a model dielectric function that includes both the static dielectric and Thomas-Fermi screening. We applied DSCC to simulate the electronic and magnetic properties of typical 3d, 4f, and 5f strongly correlated systems. The accuracy of DSCC is comparable to that of hybrid functionals but an order of magnitude faster. In addition, DSCC can reflect the difference in the Coulomb interaction between metallic and insulating situations, similar to the popular but computationally expensive constrained random phase approximation approach. This feature suggests that DSCC is also a promising method for simulating Coulomb interaction parameters.

3.
J Pharm Anal ; 13(4): 388-402, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37181289

RESUMO

Cell mechanics is essential to cell development and function, and its dynamics evolution reflects the physiological state of cells. Here, we investigate the dynamical mechanical properties of single cells under various drug conditions, and present two mathematical approaches to quantitatively characterizing the cell physiological state. It is demonstrated that the cellular mechanical properties upon the drug action increase over time and tend to saturate, and can be mathematically characterized by a linear time-invariant dynamical model. It is shown that the transition matrices of dynamical cell systems significantly improve the classification accuracies of the cells under different drug actions. Furthermore, it is revealed that there exists a positive linear correlation between the cytoskeleton density and the cellular mechanical properties, and the physiological state of a cell in terms of its cytoskeleton density can be predicted from its mechanical properties by a linear regression model. This study builds a relationship between the cellular mechanical properties and the cellular physiological state, adding information for evaluating drug efficacy.

4.
J Chem Phys ; 158(8): 084108, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36859109

RESUMO

As correlation strength has a key influence on the simulation of strongly correlated materials, many approaches have been proposed to obtain the parameter using first-principles calculations. However, a comparison of the different Coulomb strengths obtained using these approaches and an investigation of the mechanisms behind them are still needed. Taking lanthanide metals as an example, we research the factors that affect the effective Coulomb interaction strength, Ueff, by local screened Coulomb correction (LSCC), linear response (LR), and constrained random-phase approximation (cRPA) in the Vienna Ab initio Simulation Package. The Ueff LSCC value increases from 4.75 to 7.78 eV, Ueff LR is almost stable at about 6.0 eV (except for Eu, Er, and Yb), and Ueff cRPA shows a two-stage decreasing trend in both light and heavy lanthanides. To investigate these differences, we establish a scheme to analyze the coexistence and competition between the orbital localization and the screening effect. We find that LSCC and cRPA are dominated by the orbital localization and the screening effect, respectively, whereas LR shows the balance of the competition between the two factors. Additionally, the performance of these approaches is influenced by different starting points from the Perdew-Burke-Ernzerhof (PBE) and PBE + U, especially for cRPA. Our results provide useful knowledge for understanding the Ueff of lanthanide materials, and similar analyses can also be used in the research of other correlation strength simulation approaches.

5.
IEEE Trans Nanobioscience ; 22(1): 19-27, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-34941515

RESUMO

The mechanical properties of cells play important roles in regulating the physiological activities of cells and reflect the state of macro-organisms. Although many approaches are available for investigating the mechanical properties of cells, the fluidity of cytoplasm across cell boundaries makes characterizing the dynamics of mechanical properties of single cells exceedingly difficult. In this study, we present a single cell characterization method by modelling the dynamics of cellular mechanical properties measured with an atomic force microscope (AFM). The mechanical dynamics of a single cell system was described by a linear model with a mechanical stimulus as virtual input and mechanical property parameters as outputs. The dynamic mechanical properties of a single cell were characterized by the system matrix of the single cell system. The method was used to classify different types of cells, and the experimental results show that the proposed method outperformed conventional methods by achieving an average classification accuracy of over 90%. The developed method can be used to classify different cancer types according to the mechanical properties of tumour cells, which is of great significance for clinically assisted pathological diagnosis.


Assuntos
Fenômenos Biomecânicos , Fenômenos Biomecânicos/fisiologia , Microscopia de Força Atômica/métodos , Linhagem Celular
6.
J Plant Physiol ; 280: 153864, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36423449

RESUMO

The dry-land farming system of China relies on plastic film mulching and natural rainfall to mitigate damage caused by drought. However, the applications of deficit irrigation modes combined with the planting models can significantly increase production of wheat, dry matter translocation and radiation use efficiency (RUE) remains unidentified. Thus, in 2016-2018, we conducted field trials that implemented four deficit irrigation modes (IJF: irrigation at jointing and flowering stages; IF: irrigation at flowering stage; IJ: irrigation at jointing stage; NI: no irrigation) under two cultivation patterns (ridge furrow rainfall harvesting system (RF); traditional flat cultivation (TF)). The results indicated that the effects of RF system with deficit irrigation (IJF: 250 mm) could significantly increase the soil moisture, and thus enhanced LAI, In value, IPAR, RUE, and PAR capture ratio than that of TF-NI planting. This is due to decreased canopy light transmittance (LT), reflection and penetration ratio of PAR, as a result considerable improve the biomass translocation and grain yield. Owing to the very low soil water content after the seed-filling, the LAI, IPAR, and In value decreased during the seed-filling under water stress, ultimately affecting the dry matter translocation efficiency. While the IJF and IF treatments provided water for reproductive growth stage, therefore, the production of wheat and RUE were significantly maximum compared with IJ and NI irrigation mode. Under the RF system with IJF, IF, and IJ treatments the grain yield increased by 81.2%, 56.8%, 45.6% and 17.2%, then that of TF-NI treatment, respectively. The highest RUE (1.93 g MJ-1), dry-matter translocation (154.2%) and seed yield (81.2%) were obtained in the RF-IJF treatment compared with TF-NI. Therefore, the RF-IJF treatment significantly improved the earlier development and rapid plant growth, which is a suitable planting model for increasing soil moisture, LAI, RUE, DMT, and winter wheat production.


Assuntos
Irrigação Agrícola , Triticum , Irrigação Agrícola/métodos , Agricultura/métodos , Solo , Grão Comestível , Biomassa , China
7.
Acta Biomater ; 154: 443-453, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36243369

RESUMO

Targeted delivery is a promising mean for various biomedical applications, and various micro/nano robots have been created for drug delivery. Mesoporous silica has been shown to be successful as a drug delivery carrier in numerous studies. However, mesoporous silica preparation usually requires expensive and toxic chemicals, which limits its biomedical applications. Diatoms, as the naturally porous silica structure, are promising substitutes for the artificial mesoporous silica preparation. However, the current studies utilizing intact diatom frustules as drug delivery packets lack flexible and controllable locomotion. Herein, we propose a biohybrid magnetic microrobot based on Thalassiosira weissflogii frustules (TWFs) as a cargo packet for targeted drug delivery using a simple preparation method. Biohybrid microrobots are fabricated in large quantities by attaching magnetic nanoparticles (Fe3O4) to the surface of diatoms via electrostatic adsorption. Biohybrid microrobots are agile and controllable under the influence of external magnetic fields. They could be precisely controlled to follow specific trajectories or to move as swarms. The cooperation of the two motion modes of the biohybrid microrobots increased microrobots' environmental adaptability. Microrobots have a high drug-loading capacity and pH-sensitive drug release. In vitro cancer cell experiments further demonstrated the controllability of diatom microrobots for targeted drug delivery. The biohybrid microrobots reported in this paper convert natural diatoms into cargo packets for biomedical applications, which possess active and controllable properties and show huge potential for targeted anticancer therapy. STATEMENT OF SIGNIFICANCE: In this study, diatoms with good biocompatibility were used to prepare biohybrid magnetic microrobots. Compared with the current diatom-based systems for drug delivery, the microrobots prepared in this study for targeted drug delivery have more flexible motion characteristics and exhibit certain swarming behaviors. Under the same magnetic field strength, by changing the magnetic field frequency, the movement state of the diatoms can be changed to pass through the narrow channel, so that it has better environmental adaptability.


Assuntos
Diatomáceas , Liberação Controlada de Fármacos , Diatomáceas/química , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos/química , Dióxido de Silício/química , Concentração de Íons de Hidrogênio
8.
Front Plant Sci ; 13: 889542, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35592562

RESUMO

Ratoon rice is proposed as a promising way to improve rice productivity via increasing harvest frequency. Nitrogen (N) is the most effective in promoting the development and growth of ratoon plants. However, limited information is available on how different N management practices affect the biomass production of the ratoon crop (RC) through influencing canopy light interception, radiation use efficiency (RUE), and N utilization. Field experiments were conducted in central China in 2016 and 2017 to examine the effects of N management practices on the biomass accumulation of RC and the underlying physiological mechanisms. The N rates (100 vs. 200 kg N ha-1) in the main crop (MC) had a small and inconsistent effect on the biomass accumulation of RC. N application at 15 days after heading of MC for promoting bud development (Nbud, 100 kg N ha-1) increased total biomass production of RC by 17.2-19.1%, due to the improvements in both pre- and post-heading biomass production during the ratoon season (BPratoon). N application at 1-2 days after harvesting of MC for promoting the growth of regenerated tillers (Ntiller, 100 kg N ha-1) increased total biomass production of RC by 7.8-15.9% due to the improvements in post-heading BPratoon alone or both pre- and post-heading BPratoon. The differences in BPratoon caused by Nbud and Ntiller were associated with crop growth rate, leaf area index, RUE, and N uptake of RC. Total N uptake of RC was improved by Nbud through increasing stubble N content at harvest of MC and by Ntiller through increasing plant N uptake during the ratoon season. N use efficiency for BPratoon was reduced by Ntiller but not by Nbud. These results suggest that both Nbud and Ntiller play important roles in improving biomass production in RC, although Nbud was more efficient than Ntiller.

9.
Adv Sci (Weinh) ; 9(12): e2103902, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35224895

RESUMO

With the rapid evolution of microelectronics and nanofabrication technologies, the feature sizes of large-scale integrated circuits continue to move toward the nanoscale. There is a strong need to improve the quality and efficiency of integrated circuit inspection, but it remains a great challenge to provide both rapid imaging and circuit node-level high-resolution images simultaneously using a conventional microscope. This paper proposes a nondestructive, high-throughput, multiscale correlation imaging method that combines atomic force microscopy (AFM) with microlens-based scanning optical microscopy. In this method, a microlens is coupled to the end of the AFM cantilever and the sample-facing side of the microlens contains a focused ion beam deposited tip which serves as the AFM scanning probe. The introduction of a microlens improves the imaging resolution of the AFM optical system, providing a 3-4× increase in optical imaging magnification while the scanning imaging throughput is improved ≈8×. The proposed method bridges the resolution gap between traditional optical imaging and AFM, achieves cross-scale rapid imaging with micrometer to nanometer resolution, and improves the efficiency of AFM-based large-scale imaging and detection. Simultaneously, nanoscale-level correlation between the acquired optical image and structure information is enabled by the method, providing a powerful tool for semiconductor device inspection.


Assuntos
Microscopia de Força Atômica , Microscopia de Força Atômica/métodos
10.
BMC Bioinformatics ; 22(1): 451, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34548014

RESUMO

BACKGROUND: Combinatorial drug therapy for complex diseases, such as HSV infection and cancers, has a more significant efficacy than single-drug treatment. However, one key challenge is how to effectively and efficiently determine the optimal concentrations of combinatorial drugs because the number of drug combinations increases exponentially with the types of drugs. RESULTS: In this study, a searching method based on Markov chain is presented to optimize the combinatorial drug concentrations. In this method, the searching process of the optimal drug concentrations is converted into a Markov chain process with state variables representing all possible combinations of discretized drug concentrations. The transition probability matrix is updated by comparing the drug responses of the adjacent states in the network of the Markov chain and the drug concentration optimization is turned to seek the state with maximum value in the stationary distribution vector. Its performance is compared with five stochastic optimization algorithms as benchmark methods by simulation and biological experiments. Both simulation results and experimental data demonstrate that the Markov chain-based approach is more reliable and efficient in seeking global optimum than the benchmark algorithms. Furthermore, the Markov chain-based approach allows parallel implementation of all drug testing experiments, and largely reduces the times in the biological experiments. CONCLUSION: This article provides a versatile method for combinatorial drug screening, which is of great significance for clinical drug combination therapy.


Assuntos
Algoritmos , Simulação por Computador , Combinação de Medicamentos , Cadeias de Markov , Probabilidade
11.
ACS Appl Mater Interfaces ; 13(33): 39550-39560, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34378373

RESUMO

Tunable microlens arrays (MLAs) with controllable focal lengths have been extensively used in optical sensors, biochips, and electronic devices. The commonly used method is electrowetting on dielectric (EWOD) that controls the contact angle of the microlens to adjust the focal length. However, the fabrication of tunable MLAs at the microscale remains a challenge because the size of MLAs is limited by the external electrodes of EWOD. In this study, a highly integrated planar annular microelectrode array was proposed to achieve an electrowetting tunable MLA. The planar microelectrode was fabricated by electrohydrodynamic jet (E-jet) printing and the liquid microlens was then deposited in situ on the microelectrode. This method could realize 36 tunable liquid microlenses with an average diameter of 24 µm in a 320 × 320 µm2 plane. The fabricated tunable MLAs with higher integration levels and smaller sizes can be beneficial for cell imaging, optofluidic systems, and microfluidic chips.

12.
IEEE Trans Biomed Eng ; 68(1): 130-147, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32340931

RESUMO

Nanorobotics, which has long been a fantasy in the realm of science fiction, is now a reality due to the considerable developments in diverse fields including chemistry, materials, physics, information and nanotechnology in the past decades. Not only different prototypes of nanorobots whose sizes are nanoscale are invented for various biomedical applications, but also robotic nanomanipulators which are able to handle nano-objects obtain substantial achievements for applications in biomedicine. The outstanding achievements in nanorobotics have significantly expanded the field of medical robotics and yielded novel insights into the underlying mechanisms guiding life activities, remarkably showing an emerging and promising way for advancing the diagnosis & treatment level in the coming era of personalized precision medicine. In this review, the recent advances in nanorobotics (nanorobots, nanorobotic manipulations) for biomedical applications are summarized from several facets (including molecular machines, nanomotors, DNA nanorobotics, and robotic nanomanipulators), and the future perspectives are also presented.


Assuntos
Nanotecnologia , Robótica , DNA , Previsões
13.
Acta Pharmacol Sin ; 42(3): 323-339, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32807839

RESUMO

Mechanics are intrinsic properties which appears throughout the formation, development, and aging processes of biological systems. Mechanics have been shown to play important roles in regulating the development and metastasis of tumors, and understanding tumor mechanics has emerged as a promising way to reveal the underlying mechanisms guiding tumor behaviors. In particular, tumors are highly complex diseases associated with multifaceted factors, including alterations in cancerous cells, tissues, and organs as well as microenvironmental cues, indicating that investigating tumor mechanics on multiple levels is significantly helpful for comprehensively understanding the effects of mechanics on tumor progression. Recently, diverse techniques have been developed for probing the mechanics of tumors, among which atomic force microscopy (AFM) has appeared as an excellent platform enabling simultaneously characterizing the structures and mechanical properties of living biological systems ranging from individual molecules and cells to tissue samples with unprecedented spatiotemporal resolution, offering novel possibilities for understanding tumor physics and contributing much to the studies of cancer. In this review, we survey the recent progress that has been achieved with the use of AFM for revealing micro/nanoscale mechanics in tumor development and metastasis. Challenges and future progress are also discussed.


Assuntos
Microscopia de Força Atômica/métodos , Metástase Neoplásica/fisiopatologia , Citoesqueleto de Actina/metabolismo , Animais , Membrana Basal/metabolismo , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Módulo de Elasticidade , Transição Epitelial-Mesenquimal/fisiologia , Exossomos/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestrutura , Humanos , Metástase Neoplásica/patologia , Metástase Neoplásica/ultraestrutura , Esferoides Celulares/metabolismo
14.
ACS Appl Mater Interfaces ; 12(42): 48093-48100, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32960563

RESUMO

Nanomanipulation provides high operating accuracy and has been successfully applied in many fields such as nanoparticle assembly, nanowire alignment, and semiconductor device manufacturing. However, because of the limits of optical diffraction, the use of nanomanipulation is challenged by a lack of visual feedback at the nanoscale, and thus, its efficiency is difficult to be improved. In this study, we developed a novel method of microlens-enhanced nanomanipulation capable of real-time super-resolution imaging. Nanomanipulation was performed using the atomic force microscopy (AFM) mechanism by coupling a microlens to an AFM probe, and optical imaging with a minimum characteristic size of 80 nm is realized by combining the microlens with the optical imaging system. Under the conditions of fluorescent illumination and white light illumination, nanomanipulations were achieved under real-time visual guidance for fluorescent nanoparticles with a diameter of 100 nm and silver nanowires with a diameter of 80 nm, respectively. This method enables the possibility of in situ observation and manipulation, which can potentially be used for biological samples.

15.
Biomed Microdevices ; 22(3): 55, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32797312

RESUMO

Cell separation has always been a key topic in academic research, especially in the fields of medicine and biology, due to its significance in diagnosis and treatment. Accurate, high-throughput and non-invasive separation of individual cells is key to driving the development of biomedicine and cellular biology. In recent years, a series of researches on the use of microfluidic technologies for cell separation have been conducted to solve bio-related problems. Hence, we present here a comprehensive review on the recent developments of microfluidic technologies for cell separation. In this review, we discuss several cell separation methods, mainly including: physical and biochemical method, their working principles as well as their practical applications. We also analyze the advantages and disadvantages of each method in detail. In addition, the current challenges and future prospects of microfluidic-based cell separation were discussed.


Assuntos
Separação Celular/instrumentação , Técnicas Analíticas Microfluídicas , Humanos
16.
Lab Chip ; 20(14): 2447-2452, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32542258

RESUMO

Cell adhesion plays an important role in cell communication, organ formation and tissue maintenance. Spatial microstructure patterning has the capability to regulate cell functions such as cell adhesion and cell proliferation as well as cellular mechanical properties. In this study, we present a simple method to fabricate micro-hump patterned interfaces based on electrohydrodynamic jet (E-jet) printing to control and direct cell organization. Micro-hump structures were rapidly fabricated by E-jet printing and arbitrary cell patterns can be achieved by selective cell adhesion induced by this surface topography. Furthermore, cellular mechanical properties were regulated by changing the density of microstructures. The technique we proposed could dynamically direct cell organization in a controlled manner, providing help for exploring the fundamental mechanism of cell adhesion and sensing.


Assuntos
Comunicação Celular , Impressão Tridimensional , Adesão Celular , Fibroblastos , Propriedades de Superfície
17.
Micromachines (Basel) ; 11(5)2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32438680

RESUMO

Cell dielectric properties, a type of intrinsic property of cells, can be used as electrophysiological biomarkers that offer a label-free way to characterize cell phenotypes and states, purify clinical samples, and identify target cancer cells. Here, we present a review of the determination of cell dielectric properties using alternating current (AC) electrokinetic-based microfluidic mechanisms, including electro-rotation (ROT) and dielectrophoresis (DEP). The review covers theoretically how ROT and DEP work to extract cell dielectric properties. We also dive into the details of differently structured ROT chips, followed by a discussion on the determination of cell dielectric properties and the use of these properties in bio-related applications. Additionally, the review offers a look at the future challenges facing the AC electrokinetic-based microfluidic platform in terms of acquiring cell dielectric parameters. Our conclusion is that this platform will bring biomedical and bioengineering sciences to the next level and ultimately achieve the shift from lab-oriented research to real-world applications.

18.
Opt Lett ; 45(8): 2454-2457, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32287257

RESUMO

We report a novel, to the best of our knowledge, method to rapidly characterize different kinds of cells and drug-treated cancer cells using a label-free biomarker of self-rotation in an optoelectrokinetics (OEK)-based microfluidic platform. OEK incorporates optics and electrokinetics into microfluidics, thereby offering a contact-free, label-free, and rapid approach to the cellular manipulation community. Self-rotational behaviors of four different kinds of cells were experimentally investigated by the frequency-sweeping of an AC bias potential in an optically induced nonuniform and irrotational electric field. The results revealed that these kinds of cells displayed a Gaussian distribution versus the AC frequency as well as different self-rotational speeds under the same conditions. Furthermore, the peak self-rotational speed varied from one kind of cell to another, with that of cancer cells higher than that of normal cells. In addition, MCF-7 cells treated by various concentrations of drug showed remarkably different self-rotational speeds. This finding suggests a high potential of developing a new label-free biomarker to rapidly distinguish different kinds of cancer cells and quantitatively monitor the response of cancer patients to various treatments.


Assuntos
Técnicas Citológicas/instrumentação , Dispositivos Lab-On-A-Chip , Fenômenos Ópticos , Equipamentos e Provisões Elétricas , Humanos , Células MCF-7
19.
IEEE Trans Nanobioscience ; 19(3): 385-393, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32203024

RESUMO

Utilizing cell culture medium to grow cells in vitro has been widely studied in the past decades and has been recognized as an acknowledged way for investigating cell activities. However, due to the lack of adequate observation tools, the detailed mechanisms regulating cell growth in cell culture medium are still not fully understood. In this work, atomic force microscopy (AFM), a powerful tool for observing native biological systems under near-physiological conditions with high resolution, was applied to reveal the nanogranular surfaces formed in cell culture medium in situ for promoting cell growth. First, AFM imaging of glass slides (glass slides were previously incubated in cell culture medium) in aqueous environment clearly visualized the cell culture medium-forming nanogranular surfaces on glass slides. By altering the incubation time of glass slides in cell culture medium, the dynamic formation of nanogranular surfaces was remarkably observed. Next, fluorescent labeling experiments of the cell culture medium-treated glass slides showed that bovine serum proteins were contained in the nanogranular surfaces. Further, the adhesive interactions between cells and nanogranular surfaces probed by AFM force spectroscopy and the cell growth experiments showed that cell culture medium-forming nanogranular surfaces promote cell attachment and growth. The study provides novel insights into nanotopography-regulated molecular mechanisms in cell growth and demonstrates the outstanding capabilities of AFM in addressing biological issues with unprecedented spatial resolution under aqueous conditions, which will have potential impacts on the studies of cell behaviors and cell functions.


Assuntos
Técnicas de Cultura de Células/métodos , Membrana Celular/química , Meios de Cultura/química , Microscopia de Força Atômica/métodos , Nanoestruturas/química , Animais , Linhagem Celular , Camundongos , Propriedades de Superfície
20.
J Phys Chem Lett ; 11(5): 1835-1839, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32077702

RESUMO

The charge-carrier distribution has been an important parameter in determining the efficiency of quantum-dot-based light-emitting diodes (QLEDs). In this Letter, we demonstrate a new inverted device structure of ITO/ZnO/polyethylenimine/quantum dots (QDs)/1,3,5-tris(N-phenylbenzimidazole-2-yl)benzene (TPBi)/4,4'-bis(9-carbazolyl)-2,2'-biphenyl (CBP)/MoO3/Al for improving the efficiency of InP-QD-based QLEDs. By introducing a thin layer of electron transport materials, the hole accumulation at the hole transport layer and the QD interface is largely reduced, which suppresses the quenching effect of holes on the QD emission. Compared with the conventional device structure with the emitters at ZnO/CBP pn junction, the peak current efficiency (external quantum efficiency) increases from 3.83 (5.17 cd/A) to 6.32% (8.54 cd/A) by imbedding the QDs at the electron-dominating interface of ZnO/TPBi. The analysis reveals that an internal quantum efficiency of nearly 100% is achieved for the InP-QD-based device (with a photoluminescence quantum yield of 32%). This work provides an alternative device structure for achieving high-efficiency QLED devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA