Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomater Sci ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976288

RESUMO

Lipids have demonstrated tremendous promise for mRNA delivery, as evidenced by the success of Covid-19 mRNA vaccines. However, existing lipids are mostly used as delivery vehicles and lack the ability to monitor and further modulate the target cells. Here, for the first time, we report a class of unnatural lipids (azido-DOTAP) that can efficiently deliver mRNAs into cells and meanwhile metabolically label cells with unique chemical tags (e.g., azido groups). The azido tags expressed on the cell membrane enable the monitoring of transfected cells, and can mediate subsequent conjugation of cargos via efficient click chemistry for further modulation of transfected cells. We further demonstrate that the dual-functional unnatural lipid is applicable to different types of cells including dendritic cells, the prominent type of antigen presenting cells, potentially opening a new avenue to developing enhanced mRNA vaccines.

2.
Mater Today Bio ; 25: 101020, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38500558

RESUMO

Surgery followed by adjuvant chemotherapy or radiation therapy remains the mainstream treatment for breast cancer in the clinic. However, cancer recurrence post surgery is still common. In view of the clinical practice that autologous fat tissue grafting is often used to facilitate breast reconstruction after lumpectomy, here we develop an in vivo targetable adipocyte-based drug depot for the prevention of post-surgical cancer recurrence. We show that primary adipocytes can be metabolically labeled with clickable chemical tags (e.g., azido groups), for subsequent conjugation of dibenzocyclooctyne (DBCO)-bearing cargo via efficient click chemistry. The conjugated cargo can retain well on the adipocyte membrane. By incorporating a cleavable linker between DBCO and cargo, the conjugated cargo can be gradually released from the surface of adipocytes to effect on neighboring cells. In the context of breast cancer surgery, azido-labeled adipocytes grafted to the surgical site can capture circulating DBCO-drugs for improved prevention of 4T1 triple-negative breast cancer (TNBC) recurrence and metastasis. This targetable and refillable adipocyte-based drug depot holds great promise for drug delivery, transplantation, and other applications.

3.
Nat Commun ; 14(1): 8047, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052869

RESUMO

As key mediators of cellular communication, extracellular vesicles (EVs) have been actively explored for diagnostic and therapeutic applications. However, effective methods to functionalize EVs and modulate the interaction between EVs and recipient cells are still lacking. Here we report a facile and universal metabolic tagging technology that can install unique chemical tags (e.g., azido groups) onto EVs. The surface chemical tags enable conjugation of molecules via efficient click chemistry, for the tracking and targeted modulation of EVs. In the context of tumor EV vaccines, we show that the conjugation of toll-like receptor 9 agonists onto EVs enables timely activation of dendritic cells and generation of superior antitumor CD8+ T cell response. These lead to 80% tumor-free survival against E.G7 lymphoma and 33% tumor-free survival against B16F10 melanoma. Our study yields a universal technology to generate chemically tagged EVs from parent cells, modulate EV-cell interactions, and develop potent EV vaccines.


Assuntos
Vacinas Anticâncer , Vesículas Extracelulares , Neoplasias Cutâneas , Humanos , Vacinas Anticâncer/metabolismo , Vesículas Extracelulares/metabolismo , Comunicação Celular , Neoplasias Cutâneas/metabolismo
4.
APL Bioeng ; 6(3): 036103, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36035771

RESUMO

Biohybrid robots, composed of cellular actuators and synthetic scaffolds, have garnered much attention in recent years owing to the advantages provided by their biological components. In recent years, various forms of biohybrid robots have been developed that are capable of life-like movements, such as walking, swimming, and gripping. Specifically, for walking or crawling biorobots, there is a need for complex functionality and versatile and robust fabrication processes. Here, we designed and fabricated multi-actuator biohybrid walkers with multi-directional walking capabilities in response to noninvasive optical stimulation through a scalable modular biofabrication process. Our new fabrication approach provides a constant mechanical strain throughout the cellular differentiation and maturation process. This maximizes the myotube formation and alignment, limits passive bending, and produces higher active forces. These demonstrations of the new fabrication process and bioactuator designs can pave the way for advanced multi-cellular biohybrid robots and enhance our understanding of the emergent behaviors of these multi-cellular engineered living systems.

5.
Food Chem ; 366: 130557, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34284195

RESUMO

Diacylglycerol (DAG) is commonly used as fat substitute in food manufacture due to its functional properties, but DAG has poor emulsification and oxidation stability, which limits its wide application in food industry. In this work, fluorescence quenching data and thermodynamic parameters were analyzed to investigate the interaction mechanism between l-theanine (L-Th) and ß-lactoglobulin (ß-LG). DAG emulsion was prepared by using ß-lactoglobulin-theanine (ß-LG-Th) as surface stabilizer, and its emulsification and oxidation stability were evaluated. The results showed that the hydrophobic interaction played an important role on the conjugate of ß-LG and L-Th due to the negative values for ΔG, positive values for ΔH and ΔS at pH 4.0, pH 6.0 and pH 8.0. The DAG has been better embedded by using ß-LG-Th as surface stabilizer, and the droplet size was about 0.2 µm to 1.5 µm when the pH was 6.0, the ratio of L-Th to ß-LG was 1:1. ß-LG-Th as surface stabilizer for DAG can increase the ζ-potential and emulsion index, make the emulsion droplet size distribution more uniform. The l-theanine was better to be used to improve the emulsification stability and antioxidant capacity of DAG by binding ß-LG as surface stabilizer.


Assuntos
Antioxidantes , Lactoglobulinas , Diglicerídeos , Emulsões , Glutamatos , Interações Hidrofóbicas e Hidrofílicas
6.
Sci Bull (Beijing) ; 66(11): 1091-1100, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36654343

RESUMO

Electronic skins and flexible pressure sensors are important devices for advanced healthcare and intelligent robotics. Sensitivity is a key parameter of flexible pressure sensors. Whereas introducing surface microstructures in a capacitive-type sensor can significantly improve its sensitivity, the signal becomes nonlinear and the pressure response range gets much narrower, significantly limiting the applications of flexible pressure sensors. Here, we designed a pressure sensor that utilizes a nanoscale iontronic interface of an ionic gel layer and a micropillared electrode, for highly linear capacitance-to-pressure response and high sensitivity over a wide pressure range. The micropillars undergo three stages of deformation upon loading: initial contact (0-6 kPa) and structure buckling (6-12 kPa) that exhibit a low and nonlinear response, as well as a post-buckling stage that has a high signal linearity with high sensitivity (33.16 kPa-1) over a broad pressure range of 12-176 kPa. The high linearity lies in the subtle balance between the structure compression and mechanical matching of the two materials at the gel-electrode interface. Our sensor has been applied in pulse detection, plantar pressure mapping, and grasp task of an artificial limb. This work provides a physical insight in achieving linear response through the design of appropriate microstructures and selection of materials with suitable modulus in flexible pressure sensors, which are potentially useful in intelligent robots and health monitoring.

7.
Adv Healthc Mater ; 9(17): e2001023, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32729260

RESUMO

The pulse is a key biomedical signal containing various human physiological and pathological information highly related to cardiovascular diseases. Pulse signals are often collected from the radial artery based on Traditional Chinese Medicine, or by using flexible pressure sensors. However, the wrist wrapped with a flexible pressure sensor exhibits unstable signals under hand motion because of the concave surface of the wrist. By contrast, fingertips have a convex surface and therefore show great promises in stable and long-term pulse monitoring. Despite the promising potential, the fingertip pulse signal is weak, calling for highly sensitive detecting devices. Here, a highly sensitive and flexible iontronic pressure sensor with a linear sensitivity of 13.5 kPa-1 , a swift response, and remarkable stability over 5000 loading/unloading cycles is developed. This sensor enables stable and high-resolution detection of pulse waveform under both static condition and finger motion. Fingertip pulse waveforms from subjects of different genders, age, and health conditions are collected and analyzed, suggesting that fingertip pulse information is highly similar to that of the radial artery. This work justifies that fingertip is an ideal platform for pulse signals monitoring, which would be a competitive alternative to existing complex health monitoring systems.


Assuntos
Dedos , Pulso Arterial , Feminino , Frequência Cardíaca , Humanos , Masculino , Monitorização Fisiológica , Movimento (Física)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA