Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 754
Filtrar
1.
Transl Cancer Res ; 13(4): 1685-1694, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38737698

RESUMO

Background: The causal link between kidney cancer and omega-3/6 (ω-3/6) fatty acids is yet to be clearly established. Therefore, the objective of our study was to investigate these potential causal relationships. Methods: We conducted a two-sample Mendelian randomization (MR) analysis to investigate the possible causal association between ω-3/6 fatty acids and kidney cancer. We utilized the random effect inverse variance weighted (IVW) method as our primary analytical approach for the two-sample MR analysis. In addition, sensitivity analyses such as heterogeneity tests, pleiotropy analyses, and leave-one-out analyses were performed to assess the robustness of the MR analysis results. Results: The IVW method showed statistically significant associations between ω-3 and ω-6 fatty acids and increased risk of kidney cancer. The result for ω-3 and ω-6 were [odds ratio (OR) =1.27; 95% confidence interval (CI): 1.04-1.55; P=0.02] and (OR =1.56; 95% CI: 1.17-2.09; P=0.003), respectively. Moreover, in the results of sensitivity analyses, no apparent horizontal gene pleiotropy nor heterogeneity was observed. After performing "the leave-one-out" sensitivity analysis of the data one by one, no single nucleotide polymorphisms (SNPs) sites in each instrumental variable (IV) were found to have greatly affected the disease outcome. Conclusions: Elevated serum ω-3/6 fatty acids levels are causally associated with an increased risk of kidney cancer. Therefore, it is crucial to monitor dietary intake and properly intervene to lower these levels in those at risk of kidney cancer.

2.
Toxicol Appl Pharmacol ; 487: 116957, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38735590

RESUMO

Heart failure is associated with histone deacetylase (HDAC) regulation of gene expression, the inhibition of which is thought to be beneficial for heart failure therapy. Here, we explored the cardioprotective effects and underlying mechanism of a novel selenium-containing HDAC inhibitor, Se-SAHA, on isoproterenol (ISO)-induced heart failure. We found that pretreatment with Se-SAHA attenuated ISO-induced cardiac hypertrophy and fibrosis in neonatal rat ventricular myocytes (NRVMs). Se-SAHA significantly attenuated the generation of ISO-induced reactive oxygen species (ROS) and restored the expression levels of superoxide dismutase 2 (SOD2) and heme oxygenase-1 (HO-1) in vitro. Furthermore, Se-SAHA pretreatment prevented the accumulation of autophagosomes. Se-SAHA reversed the high expression of HDAC1 and HDAC6 induced by ISO incubation. However, after the addition of the HDAC agonist, the effect of Se-SAHA on blocking autophagy was inhibited. Using ISO-induced mouse models, cardiac ventricular contractile dysfunction, hypertrophy, and fibrosis was reduced treated by Se-SAHA. In addition, Se-SAHA inhibited HDAC1 and HDAC6 overexpression in ISO-treated mice. Se-SAHA treatment significantly increased the activity of SOD2 and improved the ability to eliminate free radicals. Se-SAHA hindered the excessive levels of the microtubule-associated protein 1 light chain 3 (LC3)-II and Beclin-1 in heart failure mice. Collectively, our results indicate that Se-SAHA exerts cardio-protection against ISO-induced heart failure via antioxidative stress and autophagy inhibition.

3.
Nat Commun ; 15(1): 3913, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724558

RESUMO

Checkerboard lattices-where the resulting structure is open, porous, and highly symmetric-are difficult to create by self-assembly. Synthetic systems that adopt such structures typically rely on shape complementarity and site-specific chemical interactions that are only available to biomolecular systems (e.g., protein, DNA). Here we show the assembly of checkerboard lattices from colloidal nanocrystals that harness the effects of multiple, coupled physical forces at disparate length scales (interfacial, interparticle, and intermolecular) and that do not rely on chemical binding. Colloidal Ag nanocubes were bi-functionalized with mixtures of hydrophilic and hydrophobic surface ligands and subsequently assembled at an air-water interface. Using feedback between molecular dynamics simulations and interfacial assembly experiments, we achieve a periodic checkerboard mesostructure that represents a tiny fraction of the phase space associated with the polymer-grafted nanocrystals used in these experiments. In a broader context, this work expands our knowledge of non-specific nanocrystal interactions and presents a computation-guided strategy for designing self-assembling materials.

4.
Vet Microbiol ; 294: 110108, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38729093

RESUMO

H7N9 subtype avian influenza virus (AIV) poses a great challenge to poultry industry. Virus-like particle (VLP) is a prospective alternative for the traditional egg-based influenza vaccines. N-linked glycosylation (NLG) regulates the efficacy of influenza vaccines, whereas the impact of NLG modifications on the efficacy of influenza VLP vaccines remains unclear. Here, H7N9 VLPs were assembled in insect cells through co-infection with the baculoviruses expressing the NLG-modified hemagglutinin (HA), neuraminidase and matrix proteins, and the VLP vaccines were assessed in chickens and mice. NLG modifications significantly enhanced hemagglutination-inhibition and virus neutralization antibody responses in mice, rather than in chickens, because different immunization strategies were used in these animal models. The presence of dual NLG at residues 133 and 158 significantly elevated HA-binding IgG titers in chickens and mice. The VLP vaccines conferred complete protection and significantly suppressed virus replication and lung pathology post challenge with H7N9 viruses in chickens and mice. VLP immunization activated T cell immunity-related cytokine response and inhibited inflammatory cytokine response in mouse lung. Of note, the presence of dual NLG at residues 133 and 158 optimized the capacity of the VLP vaccine to stimulate interleukin-4 expression, inhibit virus shedding or alleviate lung pathology in chickens or mice. Intriguingly, the VLP vaccine with NLG addition at residue 133 provided partial cross-protection against the H5Nx subtype AIVs in chickens and mice. In conclusion, dual NLG at residues 133 and 158 in HA can be potentially used to enhance the efficacy of H7N9 VLP vaccines in chickens and mammals.

5.
Sci Total Environ ; 931: 172904, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38703845

RESUMO

Enhanced nitrogen (N) input is expected to influence the soil phosphorus (P) cycling through biotic and abiotic factors. Among these factors, soil microorganisms play a vital role in regulating soil P availability. However, the divergent contribution of functional microorganisms to soil P availability in the rhizosphere and bulk soil under N addition remains unclear. We conducted an N addition experiment with four N input rates (0, 5, 10, and 15 g N m-2 year-1) in an alpine meadow over three years. Metagenomics was employed to investigate the functional microbial traits in the rhizosphere and bulk soil. We showed that N addition had positive effects on microbial functional traits related to P-cycling in the bulk and rhizosphere soil. Specifically, high N addition significantly increased the abundance of most microbial genes in the bulk soil but only enhanced the abundance of five genes in the rhizosphere soil. The soil compartment, rather than the N addition treatment, was the dominant factor explaining the changes in the diversity and network of functional microorganisms. Furthermore, the abundance of functional microbial genes had a profound effect on soil available P, particularly in bulk soil P availability driven by the ppa and ppx genes, as well as rhizosphere soil P availability driven by the ugpE gene. Our results highlight that N addition stimulates the microbial potential for soil P mobilization in alpine meadows. Distinct microbial genes play vital roles in soil P availability in bulk and rhizosphere soil respectively. This indicates the necessity for models to further our knowledge of P mobilization processes from the bulk soil to the rhizosphere soil, allowing for more precise predictions of the effects of N enrichment on soil P cycling.


Assuntos
Pradaria , Nitrogênio , Fósforo , Rizosfera , Microbiologia do Solo , Solo , Fósforo/análise , Nitrogênio/metabolismo , Nitrogênio/análise , Solo/química , Microbiota
6.
Chin Med J (Engl) ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738689

RESUMO

ABSTRACT: In humans, the liver is a central metabolic organ with a complex and unique histological microenvironment. Hepatocellular carcinoma (HCC), which is a highly aggressive disease with a poor prognosis, accounts for most cases of primary liver cancer. As an emerging hallmark of cancers, metabolic reprogramming acts as a runaway mechanism that disrupts homeostasis of the affected organs, including the liver. Specifically, rewiring of the liver metabolic microenvironment, including lipid metabolism, is driven by HCC cells, propelling the phenotypes of HCC cells, including dissemination, invasion, and even metastasis in return. The resulting formation of this vicious loop facilitates various malignant behaviors of HCC further. However, few articles have comprehensively summarized lipid reprogramming in HCC metastasis. Here, we have reviewed the general situation of the liver microenvironment and the physiological lipid metabolism in the liver, and highlighted the effects of different aspects of lipid metabolism on HCC metastasis to explore the underlying mechanisms. In addition, we have recapitulated promising therapeutic strategies targeting lipid metabolism and the effects of lipid metabolic reprogramming on the efficacy of HCC systematical therapy, aiming to offer new perspectives for targeted therapy.

7.
Acta Pharmacol Sin ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760543

RESUMO

Bevacizumab is a recombinant humanized monoclonal immunoglobulin (Ig) G1 antibody of VEGF, and inhibits angiogenesis and tumor growth in hepatocellular carcinoma (HCC). Ferroptosis, a new form of regulated cell death function independently of the apoptotic machinery, has been accepted as an attractive target for pharmacological intervention; the ferroptosis pathway can enhance cell immune activity of anti-PD1 immunotherapy in HCC. In this study we investigated whether and how bevacizumab regulated ferroptosis and immune activity in liver cancer. Firstly, we performed RNA-sequencing in bevacizumab-treated human liver cancer cell line HepG2 cells, and found that bevacizumab significantly altered the expression of a number of genes including VEGF, PI3K, HAT1, SLC7A11 and IL-9 in liver cancer, bevacizumab upregulated 37 ferroptosis-related drivers, and downregulated 17 ferroptosis-related suppressors in particular. We demonstrated that bevacizumab triggered ferroptosis in liver cancer cells by driving VEGF/PI3K/HAT1/SLC7A11 axis. Clinical data confirmed that the expression levels of VEGF were positively associated with those of PI3K, HAT1 and SLC7A11 in HCC tissues. Meanwhile, we found that bevacizumab enhanced immune cell activity in tumor immune-microenvironment. We identified that HAT1 up-regulated miR-143 targeting IL-9 mRNA 3'UTR in liver cancer cells; bevacizumab treatment resulted in the increase of IL-9 levels and its secretion via VEGF/PI3K/HAT1/miR-143/IL-9 axis, which led to the inhibition of tumor growth in vivo through increasing the release of IL-2 and Granzyme B from activated CD8+ T cells. We conclude that in addition to inhibiting angiogenesis, bevacizumab induces ferroptosis and enhances CD8+ T cell immune activity in liver cancer. This study provides new insight into the mechanisms by which bevacizumab synergistically modulates ferroptosis and CD8+ T cell immune activity in liver cancer.

8.
Biomacromolecules ; 25(5): 2701-2714, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38608139

RESUMO

Over decades of development, while phosphoramidite chemistry has been known as the leading method in commercial synthesis of oligonucleotides, it has also revolutionized the fabrication of sequence-defined polymers (SDPs), offering novel functional materials in polymer science and clinical medicine. This review has introduced the evolution of phosphoramidite chemistry, emphasizing its development from the synthesis of oligonucleotides to the creation of universal SDPs, which have unlocked the potential for designing programmable smart biomaterials with applications in diverse areas including data storage, regenerative medicine and drug delivery. The key methodologies, functions, biomedical applications, and future challenges in SDPs, have also been summarized in this review, underscoring the significance of breakthroughs in precisely synthesized materials.


Assuntos
Materiais Biocompatíveis , Sistemas de Liberação de Medicamentos , Oligonucleotídeos , Compostos Organofosforados , Polímeros , Medicina Regenerativa , Medicina Regenerativa/métodos , Materiais Biocompatíveis/química , Polímeros/química , Sistemas de Liberação de Medicamentos/métodos , Humanos , Oligonucleotídeos/química , Compostos Organofosforados/química , Animais
9.
Medicine (Baltimore) ; 103(14): e37718, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38579073

RESUMO

The interaction between CD40 and CD40 ligand (CD40L) a crucial co-stimulatory signal for activating adaptive immune cells, has a noteworthy role in atherosclerosis. It is well-known that atherosclerosis is linked to immune inflammation in blood vessels. In atherosclerotic lesions, there is a multitude of proinflammatory cytokines, adhesion molecules, and collagen, as well as smooth muscle cells, macrophages, and T lymphocytes, particularly the binding of CD40 and CD40L. Therefore, research on inhibiting the CD40-CD40L system to prevent atherosclerosis has been ongoing for more than 30 years. However, it's essential to note that long-term direct suppression of CD40 or CD40L could potentially result in immunosuppression, emphasizing the critical role of the CD40-CD40L system in atherosclerosis. Thus, specifically targeting the CD40-CD40L interaction on particular cell types or their downstream signaling pathways may be a robust strategy for mitigating atherosclerosis, reducing potential side effects. This review aims to summarize the potential utility of the CD40-CD40L system as a viable therapeutic target for atherosclerosis.


Assuntos
Aterosclerose , Ligante de CD40 , Humanos , Aterosclerose/tratamento farmacológico , Aterosclerose/imunologia , Antígenos CD40/antagonistas & inibidores , Antígenos CD40/metabolismo , Ligante de CD40/antagonistas & inibidores , Ligante de CD40/metabolismo , Citocinas/metabolismo , Interleucina-2/metabolismo , Macrófagos/metabolismo
10.
J Am Chem Soc ; 146(17): 11764-11772, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38625675

RESUMO

Direct imaging of single molecules at nanostructured interfaces is a grand challenge with potential to enable new, precise material architectures and technologies. Of particular interest are the structural morphology and spectroscopic signatures of the adsorbed molecule, where modern probes are only now being developed with the necessary spatial and energetic resolution to provide detailed information at the molecule-surface interface. Here, we directly characterize the adsorption of individual m-terphenyl isocyanide ligands on a reconstructed Au(111) surface through scanning tunneling microscopy and inelastic electron tunneling spectroscopy. The site-dependent steric pressure of the various surface features alters the vibrational fingerprints of the m-terphenyl isocyanides, which are characterized with single-molecule precision through joint experimental and theoretical approaches. This study provides molecular-level insights into the steric-pressure-enabled surface binding selectivity as well as its effect on the chemical properties of individual surface-binding ligands.

11.
Acta Pharmacol Sin ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589688

RESUMO

Lymphocyte activation gene 3 (LAG3), an immune checkpoint molecule expressed on activated T cells, functions as a negative regulator of immune responses. Persistent antigen exposure in the tumor microenvironment results in sustained LAG3 expression on T cells, contributing to T cell dysfunction. Fibrinogen-like protein 1 (FGL1) has been identified as a major ligand of LAG3, and FGL1/LAG3 interaction forms a novel immune checkpoint pathway that results in tumor immune evasion. In addition, ubiquitin-specific peptidase 7 (USP7) plays a crucial role in cancer development. In this study we investigated the role of USP7 in modulation of FGL1-mediated liver cancer immune evasion. We showed that knockdown of USP7 or treatment with USP7 inhibitor P5091 suppressed liver cancer growth by promoting CD8+ T cell activity in Hepa1-6 xenograft mice and in HepG2 or Huh7 cells co-cultured with T cells, whereas USP7 overexpression produced the opposite effect. We found that USP7 upregulated FGL1 in HepG2 and Huh7 cells by deubiquitination of transcriptional factor PR domain zinc finger protein 1 (PRDM1), which transcriptionally activated FGL1, and attenuated the CD8+ T cell activity, leading to the liver cancer growth. Interestingly, USP7 could be transcriptionally stimulated by PRDM1 as well in a positive feedback loop. P5091, an inhibitor of USP7, was able to downregulate FGL1 expression, thus enhancing CD8+ T cell activity. In an immunocompetent liver cancer mouse model, the dual blockade of USP7 and LAG3 resulted in a superior antitumor activity compared with anti-LAG3 therapy alone. We conclude that USP7 diminishes CD8+ T cell activity by a USP7/PRDM1 positive feedback loop on FGL1 production in liver cancer; USP7 might be a promising target for liver cancer immunotherapy.

12.
Front Psychiatry ; 15: 1342398, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686127

RESUMO

Alexithymia is common among patients with generalized anxiety disorder (GAD) and may negatively affect the efficacy of treatment. This case report described a sole short-term psychotherapy focusing on alexithymia for a GAD patient. The intervention extends over 3 weekly 50-minute sessions and incorporates components of: (a) understanding the basic categories of emotions and the importance of processing them consciously and building one's own vocabulary of emotions; (b) developing skills in identifying and labeling emotions and learning to register both positive and negative emotions in daily life; (c) observing and interpreting emotion-related body sensations and learning to get in touch with, be empathetic to, and take care of one's own inner feelings in daily life. The Hamilton Rating Scale for Depression (HRSD), Hamilton Anxiety Rating Scale (HAMA), and Toronto Alexithymia Scale (TAS) were used to evaluate depression, anxiety, and alexithymia before and after the sessions. The results suggested that the treatment was not only effective in reducing alexithymia helping the patient to clarify, identify and describe her feelings, but also effective in reducing anxiety and depression.

13.
Infect Drug Resist ; 17: 1447-1457, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628244

RESUMO

Background: Urinary tract infection (UTI) associated with Klebsiella pneumoniae poses a serious threat for inpatients. This study aimed to describe the genomic characteristics of K. pneumoniae causing UTI in a tertiary-care hospital in Beijing, China. Methods: A total of 20 K. pneumoniae strains collected from 2020 to 2021 were performed whole-genome sequencing. The Antibiotic susceptibility of 19 common antimicrobial agents was tested against all strains. The multi-locus sequence types (MLSTs) and serotypes were determined from the WGS data. De novo assemblies were used to identify resistance and virulence genes. The presence and characteristics of the plasmids were detected using hybrid assembly of long and short-read data. Results: These K. pneumoniae strains were clustered into nine sequence types (STs) and twelve K-serotypes. All the carbapenem-resistant K. pneumoniae (CRKP) strains acquired carbapenemase blaKPC-2 (n=7). Two CRKP strains exhibited increased resistance to Polymyxin B with MIC ≥ 4 mg/L due to insertion of an IS5-like sequence in the mgrB gene, and they were also involved in a transmission event in Intensive Care Unit. Long-read assemblies identified many plasmids co-carrying multiple replicons. Acquisition of a new IncM2_1 type blaCTX-M-3 positive plasmid was observed after transfer from ICU to neurovascular surgery by comparing the two strains collected from the same patient. Conclusion: K. pneumoniae is a significant pathogen responsible for urinary tract infections. The ST11-KL47 strain, prevalent at our hospital, exhibits a combination of high drug resistance and hypervirulence. It is imperative to enhance ongoing genomic surveillance of urinary tract infection-causing pathogens.

14.
bioRxiv ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38659905

RESUMO

Lipid nanoparticles (LNPs) have emerged as the dominant platform for RNA delivery, based on their success in the COVID-19 vaccines and late-stage clinical studies in other indications. However, we and others have shown that LNPs induce severe inflammation, and massively aggravate pre-existing inflammation. Here, using structure-function screening of lipids and analyses of signaling pathways, we elucidate the mechanisms of LNP-associated inflammation and demonstrate solutions. We show that LNPs' hallmark feature, endosomal escape, which is necessary for RNA expression, also directly triggers inflammation by causing endosomal membrane damage. Large, irreparable, endosomal holes are recognized by cytosolic proteins called galectins, which bind to sugars on the inner endosomal membrane and then regulate downstream inflammation. We find that inhibition of galectins abrogates LNP-associated inflammation, both in vitro and in vivo . We show that rapidly biodegradable ionizable lipids can preferentially create endosomal holes that are smaller in size and reparable by the endosomal sorting complex required for transport (ESCRT) pathway. Ionizable lipids producing such ESCRT-recruiting endosomal holes can produce high expression from cargo mRNA with minimal inflammation. Finally, we show that both routes to non-inflammatory LNPs, either galectin inhibition or ESCRT-recruiting ionizable lipids, are compatible with therapeutic mRNAs that ameliorate inflammation in disease models. LNPs without galectin inhibition or biodegradable ionizable lipids lead to severe exacerbation of inflammation in these models. In summary, endosomal escape induces endosomal membrane damage that can lead to inflammation. However, the inflammation can be controlled by inhibiting galectins (large hole detectors) or by using biodegradable lipids, which create smaller holes that are reparable by the ESCRT pathway. These strategies should lead to generally safer LNPs that can be used to treat inflammatory diseases.

15.
J Diabetes ; 16(4): e13549, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38584275

RESUMO

AIMS: Management of blood glucose fluctuation is essential for diabetes. Exercise is a key therapeutic strategy for diabetes patients, although little is known about determinants of glycemic response to exercise training. We aimed to investigate the effect of combined aerobic and resistance exercise training on blood glucose fluctuation in type 2 diabetes patients and explore the predictors of exercise-induced glycemic response. MATERIALS AND METHODS: Fifty sedentary diabetes patients were randomly assigned to control or exercise group. Participants in the control group maintained sedentary lifestyle for 2 weeks, and those in the exercise group specifically performed combined exercise training for 1 week. All participants received dietary guidance based on a recommended diet chart. Glycemic fluctuation was measured by flash continuous glucose monitoring. Baseline fat and muscle distribution were accurately quantified through magnetic resonance imaging (MRI). RESULTS: Combined exercise training decreased SD of sensor glucose (SDSG, exercise-pre vs exercise-post, mean 1.35 vs 1.10 mmol/L, p = .006) and coefficient of variation (CV, mean 20.25 vs 17.20%, p = .027). No significant change was observed in the control group. Stepwise multiple linear regression showed that baseline MRI-quantified fat and muscle distribution, including visceral fat area (ß = -0.761, p = .001) and mid-thigh muscle area (ß = 0.450, p = .027), were significantly independent predictors of SDSG change in the exercise group, as well as CV change. CONCLUSIONS: Combined exercise training improved blood glucose fluctuation in diabetes patients. Baseline fat and muscle distribution were significant factors that influence glycemic response to exercise, providing new insights into personalized exercise intervention for diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/terapia , Glicemia , Automonitorização da Glicemia , Exercício Físico/fisiologia , Músculo Esquelético
16.
Eur J Pharmacol ; 972: 176558, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38614382

RESUMO

Inhibitors of polo-like kinase (PLK) are currently being evaluated as anticancer drugs. However, the molecular mechanism of PLK inhibitor-induced cell death is not fully understood. In this study, we found that GW843682X and BI2536, two inhibitors of PLK1, significantly induced cell death in multiple type cells. The induction of cell death was related to the preferring expression of PLK1. However, in human umbilical vascular endothelial cells (HUVEC) and human colorectal carcinoma cells, which expressed higher levels of both PLK1 and PLK2, PLK1 inhibitors induced very low levels of cell death. Clinical analysis reveals PLK1 presence in 26 of 30 NPC tumor tissues. In in vivo NPC lung metastasis nude mouse models, PLK1 inhibitors decreased NPC progress. Mechanistically, the PLK1 inhibitor did not activate p53, and the cell death was not reversed by p53 inhibition. Moreover, PLK1 inhibitor-induced cell death was PARP- and caspase-independent. Although PLK1 inhibitors induced down-regulation of calpain inhibitor calpastatin and calpain was activated by PLK1 inhibition, calpain blocking did not reverse cell death induced by PLK1 inhibitors, suggesting the non-involvement of calpain. Surprisingly, we found that PLK1 inhibitors induced the activation of proteasome, and the treatment of cells with PLK1 inhibitors reduced the levels of ubiquitinated proteins. And proteasome inhibitors reversed cell death induced by PLK1 inhibitors in various cell types in which PLK1 was preferentially expressed. Moreover, PLK1 inhibition reversed the degradation of proteins including p53, caspase 8, PARP and calpastatin. These results suggest that the activation of proteasome is critical for cell death induced by PLK1 inhibition.


Assuntos
Proteínas de Ciclo Celular , Morte Celular , Quinase 1 Polo-Like , Complexo de Endopeptidases do Proteassoma , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas , Humanos , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Animais , Complexo de Endopeptidases do Proteassoma/metabolismo , Morte Celular/efeitos dos fármacos , Camundongos , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Camundongos Nus , Pteridinas/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Calpaína/antagonistas & inibidores , Calpaína/metabolismo , Ativação Enzimática/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína Supressora de Tumor p53/metabolismo , Antineoplásicos/farmacologia
17.
Int Immunopharmacol ; 133: 112065, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38608448

RESUMO

Signal transducer and activator of transcription 3 (STAT3) functions to regulate inflammation and immune response, but its mechanism is not fully understood. We report here that STAT3 inhibitors Stattic and Niclosamide up-regulated IL-1ß-induced IL-8 production in C33A, CaSki, and Siha cervical cancer cells. As expected, IL-1ß-induced IL-8 production was also up-regulated through the molecular inhibition of STAT3 by use of CRISPR/Cas9 technology. Unexpectedly, IL-1ß induced IL-8 production via activating ERK and P38 signal pathways, but neither STAT3 inhibitors nor STAT3 knockout affected IL-1ß-induced signal transduction, suggesting that STAT3 decreases IL-8 production not via inhibition of signal transduction. To our surprise, STAT3 inhibition increased the stabilization, and decreased the degradation of IL-8 mRNA, suggesting a post-transcriptional regulation of IL-1ß-induced IL-8. Moreover, Dihydrotanshinone I, an inhibitor of RNA-binding protein HuR, down-regulated IL-1ß-induced IL-8 dose-dependently. HuR inhibition by CRISPR/Cas9 also decreased IL-8 production induced by IL-1ß. Mechanistically, co-immunoprecipitation results showed that STAT3 did not react with HuR directly, but STAT3 inhibition increased the protein levels of HuR in cytoplasm. And IL-6 activation of STAT3 induced HuR cytoplasmic-nuclear transport. Taken together, these results suggest that STAT3 contributes to HuR nuclear localization and inhibits Il-1ß-induced IL-8 production through this non-transcriptional mechanism.


Assuntos
Núcleo Celular , Citoplasma , Proteína Semelhante a ELAV 1 , Interleucina-1beta , Interleucina-8 , Fator de Transcrição STAT3 , Humanos , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Interleucina-1beta/metabolismo , Interleucina-8/metabolismo , Interleucina-8/genética , Proteína Semelhante a ELAV 1/metabolismo , Proteína Semelhante a ELAV 1/genética , Citoplasma/metabolismo , Núcleo Celular/metabolismo , Linhagem Celular Tumoral , Óxidos S-Cíclicos/farmacologia , Transporte Proteico , Transdução de Sinais , Transporte Ativo do Núcleo Celular , Sistemas CRISPR-Cas
18.
J Ethnopharmacol ; 329: 118069, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38552992

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The genus Dioscorea, a member of the Dioscoreaceae family, comprises approximately 600 species and is widely distributed across temperate and tropical regions such as Asia, South Africa, and North America. The traditional medicinal uses of Dioscorea have been documented in Asian and African pharmacological systems. In Asia, this genus is traditionally used to treat respiratory illnesses, rheumatism, diabetes, diarrhea, dysentery, and other conditions. In Africa, this genus has been used to treat human immunodeficiency virus and ring worms. However, the traditional medicinal practices in North America rarely mention the use of this genus. AIM OF THE STUDY: The aim of this review is to comprehensively review the genus Dioscorea, focusing on its traditional uses, phytochemical constituents, pharmacological activities, and potential toxicities. The research also aims to highlight the valuable bioactive compounds within Dioscorea and emphasize the need for further investigations into acute and chronic toxicity, activity mechanisms, molecular markers, and other relevant factors to contribute to the discovery of novel pharmaceuticals. MATERIALS AND METHODS: A search for available information on Dioscorea was conducted using scientific databases, including PubMed, ISI-WOS, Scopus, and Google Scholar, as well as recent academic publications from reputable publishers and other literature sources. The search was not limited by language and spanned the literature published between 1950 and 2022. RESULTS: This article provides a comprehensive review of the Dioscorea genus, focusing on its traditional uses, phytochemical constituents, pharmacological activities, and potential toxicities. Extensive research has been conducted on this genus, resulting in the isolation and examination of over 1000 compounds, including steroids, terpenoids, and flavonoids, to determine their biological activities. These activities include anti-tumor, anti-inflammatory, immunomodulatory, neuroprotective, hypoglycemic, and hypolipidemic effects. However, some studies have indicated the potential toxicity of high doses of Dioscorea, highlighting the need for further investigations to assess the safety of this genus. Additionally, this review explores potential avenues for future research and discusses the challenges associated with a comprehensive understanding of the Dioscorea genus. CONCLUSIONS: Based on the existing literature, it can be concluded that Dioscorea is a valuable source of bioactive compounds that have the potential to treat various disorders. Future research should prioritize the investigation of acute and chronic toxicity, activity mechanisms, molecular markers, and other relevant factors. This review provides a comprehensive analysis of the Dioscorea genus, emphasizing its potential to enable a deeper exploration of the biological activity mechanisms of these plants and contribute to the discovery of novel pharmaceuticals.


Assuntos
Dioscorea , Etnofarmacologia , Medicina Tradicional , Compostos Fitoquímicos , Humanos , Dioscorea/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/toxicidade , Compostos Fitoquímicos/química , Animais , Fitoterapia , Extratos Vegetais/farmacologia , Extratos Vegetais/toxicidade , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico
19.
Australas J Dermatol ; 65(3): e75-e76, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38439213

RESUMO

We present a palmoplantar pustulosis case partially resistant to systemic IL-17A inhibitor (ixekizumab) treatment, and then receiving a local injection of 0.1 mL micro-dose (1 mg) IL-23 inhibitor (guselkumab) every 4 weeks for four times. The paradoxical lesion disappeared rapidly following local injection and there was no recurrence after 8 weeks of drug withdrawal. This is the first clinical report on the treatment of palmoplantar pustulosis by local injection of micro-dose guselkumab.


Assuntos
Anticorpos Monoclonais Humanizados , Psoríase , Humanos , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/administração & dosagem , Psoríase/tratamento farmacológico , Feminino , Masculino , Pessoa de Meia-Idade , Falha de Tratamento , Fármacos Dermatológicos/uso terapêutico , Fármacos Dermatológicos/administração & dosagem , Fármacos Dermatológicos/efeitos adversos
20.
Int J Gen Med ; 17: 1025-1038, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525068

RESUMO

Background and Aims: Elevated eosinophils typically indicate hypersensitive inflammation; however, their involvement in cardiovascular events remains incompletely understood. We investigated the association between the absolute eosinophil count (AEC) and major adverse cardiovascular and cerebrovascular events (MACCEs) in patients with acute coronary syndrome (ACS) undergoing percutaneous coronary intervention (PCI). Additionally, we determine whether the integration of AEC with the SYNTAX II score could improve predictive ability. Methods and Results: The AECs of 1711 patients with ACS undergoing PCI from June 2016 to November 2017 were analyzed on admission. All recruitments were splitted into three groups based on AEC tertiles and 101 participants underwent one or more noteworthy outcomings. The association between AEC and MACCEs (defined as a composite of cardiovascular death, myocardial infarction [MI], and stroke) was tested by Cox proportional-hazards regression analysis. After adjusting for confounders, AEC was independently associated with MACCEs (HR 11.555, 95% CI: 3.318-40.239). Patients in the lowest AEC tertile (T1) as a reference, those in the higher tertiles had an incrementally higher risk of MACCEs (T3: HR 1.848 95% CI: 1.157-2.952; P for trend=0.008). Inclusion of AEC enhanced the predictive accuracy of the SYNTAX II score for MACCEs (AUC: from 0.701 [95% CI: 0.646-0.756] to 0.728 [95% CI: 0.677-0.780]; DeLong's test, P = 0.020). Conclusion: AEC is independently linked to MACCEs in ACS patients who underwent PCI, and adds incremental predictive information to the SYNTAX II score.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA