Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38900235

RESUMO

Antibiotic-associated diarrhea (AAD) is a common side effect of long-term and heavy antibiotic therapy. Weizmannia coagulans (W. coagulans) is an ideal probiotic because of its high viability, stability, and numerous health benefits to the host. In this study, the strains were first screened for W. coagulans WC10 (WC10) with a high combined ability based on their biological properties of gastrointestinal tolerance, adhesion, and short-chain fatty acid production ability. The effect of WC10 on mice with AAD was further evaluated. The results showed that WC10 was effective in improving the symptoms of AAD, effectively restoring antibiotic-induced weight loss, and reducing diarrhea status score and fecal water content. In addition, WC10 decreased the expression of pro-inflammatory cytokines and increased the expression of anti-inflammatory cytokines, alleviated intestinal tissue damage and inflammation, and improved intestinal epithelial barrier function by decreasing serum levels of enterotoxin, DAO, and D-lactic acid, and by increasing the expression of the intestinal mucosal immune factors sIgA and occludin. Importantly, the composition and function of the gut microbiota gradually recovered after WC10 treatment, increasing the number of SCFAs-producing Bifidobacterium and Roseburia. Subsequently, the short-chain fatty acid (SCFA) content was examined and WC10 significantly increased acetate, propionate, and butyrate production. Additionally, metabolomic analysis also showed that WC10 reversed the antibiotic interference with major metabolic pathways. These findings provide a solid scientific basis for the future application of W. coagulans WC10 in the treatment of AAD.

2.
Food Chem ; 457: 139924, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38917563

RESUMO

In the present study, we investigated the mechanisms associated with the stabilizing effects of whey protein concentrate-80 (WPC80) and L-ascorbyl 6-palmitate (LAP) on folic acid (FA). Multispectral techniques show that WPC80 binds to FA and LAP mainly through hydrophobic interactions, and that energy is transferred from WPC80 to FA and LAP in a nonradiative form (FA/LAP); The combination of FA/LAP resulted in a change in the conformation and secondary structure content of WPC80, an increase in the absolute zeta potential of the system, and a shift in the particle size distribution towards smaller sizes. The compound system exhibits strengthened antioxidant properties and favorable binding properties. Besides, WPC80 improves the storage stability of FA under different conditions. These results demonstrated that the ternary complex formed by FA co-binding with WPC80 and LAP is an effective way to improve the stability against of FA.

3.
Food Funct ; 15(10): 5329-5342, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38625681

RESUMO

Antibiotic-associated diarrhea (AAD) is a common side effect during antibiotic treatment, and this has warranted research into alternative protocols. In this study, we investigated the potential therapeutic effects of three cohorts, Lactobacillus plantarum KLDS 1.0386, Lactobacillus acidophilus KLDS 1.0901 and a mixed strain of both, on intestinal inflammation, the intestinal mucosal barrier, and microbial community in mice with ampicillin-induced diarrhea. The results showed that Lactobacillus inhibited the activation of the TLR4/NF-κB signaling pathway, decreased the expression of pro-inflammatory cytokines, increased the expression of anti-inflammatory cytokines in the murine intestine, and alleviated the intestinal barrier damage and inflammation induced by ampicillin. In addition, Lactobacillus ameliorates intestinal epithelial barrier damage by increasing the expression of tight junction proteins and aquaporins. After Lactobacillus treatment, the diversity of gut microbiota increased significantly, and the composition and function of gut microbiota gradually recovered. In the gut microbiota, Bacteroidetes and Escherichia Shigella related to the synthesis of short-chain fatty acids (SCFAs) were significantly affected by ampicillin, while Lactobacillus regulates the cascade of the microbial-SCFA signaling pathway, which greatly promoted the generation of SCFAs. Collectively, Lactobacillus showed better results in treating AAD, especially in mixed strains.


Assuntos
Antibacterianos , Diarreia , Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Animais , Camundongos , Ácidos Graxos Voláteis/metabolismo , Diarreia/induzido quimicamente , Diarreia/tratamento farmacológico , Diarreia/microbiologia , Antibacterianos/farmacologia , Antibacterianos/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Lactobacillus , Leite , Ampicilina/farmacologia , Masculino , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Probióticos/farmacologia , Lactobacillus plantarum , Lactobacillus acidophilus , Camundongos Endogâmicos C57BL
4.
Opt Express ; 31(6): 10894-10904, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37157625

RESUMO

Microsphere-assisted super-resolution imaging is a promising technique that can significantly enhance the resolution of conventional optical microscopes. The focus of a classical microsphere is called photonic nanojet, which is a symmetric high-intensity electromagnetic field. Recently, patchy microspheres have been reported to have superior imaging performance than pristine microspheres, and coating microspheres with metal films leads to the formation of photonic hooks, which can enhance the imaging contrast of microspheres. Understanding the influence of metal patches on the near-field focusing of patchy particles is important for the rational design of a nanostructured microlens. In this work, we theoretically and experimentally showed that the light waves can be focused and engineered using patchy particles. When coating dielectric particles with Ag films, light beams with a hook-like structure or S-shaped structure can be generated. Simulation results show that the waveguide ability of metal films and the geometric asymmetry of patchy particles cause the formation of S-shaped light beams. Compared with classical photonic hooks, S-shaped photonic hooks have a longer effective length and a smaller beam waist at far-field region. Experiments were also carried out to demonstrate the generation of classical and S-shaped photonic hooks from patchy microspheres.

5.
Front Nutr ; 10: 1147423, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37020807

RESUMO

Reputed as a significant metabolic disorder, non-alcoholic fatty liver disease (NAFLD) is characterized by high-fat deposits in the liver and causes substantial economic challenges to any country's workforce. Previous studies have indicated that some lactic acid bacteria may effectively prevent or treat NAFLD. Overall, L. acidophilus KLDS1.0901 protected against HFD-induced NAFLD by improving liver characteristics and modulating microbiota composition, and thus could be a candidate for improving NAFLD. This study aimed to assess the protective effects of L. acidophilus KLDS1.0901 on a high-fat diet(HFD)-induced NAFLD. First, hepatic lipid profile and histological alterations were determined to study whether L. acidophilus KLDS1.0901 could ameliorate NAFLD. Then, the intestinal permeability and gut barrier were explored. Finally, gut microbiota was analyzed to elucidate the mechanism from the insights of the gut-liver axis. The results showed that Lactobacillus KLDS1.0901 administration significantly decreased body weight, Lee's index body, fat rate, and liver index. L. acidophilus KLDS1.0901 administration significantly improved lipid profiles by decreasing the hepatic levels of total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) and by increasing the high-density lipoprotein cholesterol (HDL-C) levels. A conspicuous decrease of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum was observed after L. acidophilus KLDS1.0901 administration. Meanwhile, the H&E and Oil Red O-stained staining showed that L. acidophilus KLDS1.0901 significantly reduced liver lipid accumulation of HFD-fed mice by decreasing the NAS score and lipid area per total area. Our results showed that L. acidophilus KLDS1.0901 administration decreased the interleukin-6 (IL-6), interleukin-1ß (IL-1ß), and tumor necrosis factor-alpha (TNF-α) concentrations accompanied by the increase of interleukin-10 (IL-10). L. acidophilus KLDS1.0901 administration could improve the intestinal barrier function by upregulating the mRNA levels of occludin, claudin-1, ZO-1, and Muc-2, which were coupled to the decreases of the concentration of LPS and D-lactic acid. Notably, L. acidophilus KLDS1.0901 administration modulated the gut microbiota to a near-normal pattern. Hence, our results suggested that L. acidophilus KLDS1.0901 can be used as a candidate to ameliorate NAFLD.

6.
Opt Lett ; 48(8): 2130-2133, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37058659

RESUMO

In a fiber-based optical tweezer system, it is a common practice to insert the fiber probe into the sample solution to perform the tweezer function. Such a configuration of the fiber probe may lead to unwanted contamination and/or damage to the sample system and is thus potentially invasive. Here, we propose a completely non-invasive method for cell manipulation by combining a microcapillary microfluidic device and an optical fiber tweezer. We demonstrate that Chlorella cells inside the microcapillary channel can be successfully trapped and manipulated by an optical fiber probe located outside of the microcapillary, thus making the process completely non-invasive. The fiber does not even invade the sample solution. To our knowledge, this is the first report of such a method. The speed of stable manipulation can reach the 7 µm/s scale. We found that the curved walls of the microcapillaries worked like a lens, which helped to boost the light focusing and trapping efficiency. Numerical simulation of optical forces under medium settings reveals that the optical forces can be enhanced by up to 1.44 times, and the optical forces can change direction under certain conditions.

7.
Small ; 19(23): e2207596, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36897007

RESUMO

Super-resolution optical imaging techniques can break the optical diffraction limit, thus providing unique opportunities to visualize the microscopic world at the nanoscale. Although near-field optical microscopy techniques have been proven to achieve significantly improved imaging resolution, most near-field approaches still suffer from a narrow field of view (FOV) or difficulty in obtaining wide-field images in real time, which may limit their widespread and diverse applications. Here, the authors experimentally demonstrate an optical microscope magnification and image enhancement approach by using a submillimeter-sized solid immersion lens (SIL) assembled by densely-packed 15 nm TiO2 nanoparticles through a silicone oil two-step dehydration method. This TiO2 nanoparticle-assembled SIL can achieve both high transparency and high refractive index, as well as sufficient mechanical strength and easy-to-handle size, thus providing a fast, wide-field, real-time, non-destructive, and low-cost solution for improving the quality of optical microscopic observation of a variety of samples, including nanomaterials, cancer cells, and living cells or bacteria under conventional optical microscopes. This study provides an attractive alternative to simplify the fabrication and applications of high-performance SILs.

8.
Laser Photon Rev ; 17(12)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38883699

RESUMO

Label-free super-resolution (LFSR) imaging relies on light-scattering processes in nanoscale objects without a need for fluorescent (FL) staining required in super-resolved FL microscopy. The objectives of this Roadmap are to present a comprehensive vision of the developments, the state-of-the-art in this field, and to discuss the resolution boundaries and hurdles which need to be overcome to break the classical diffraction limit of the LFSR imaging. The scope of this Roadmap spans from the advanced interference detection techniques, where the diffraction-limited lateral resolution is combined with unsurpassed axial and temporal resolution, to techniques with true lateral super-resolution capability which are based on understanding resolution as an information science problem, on using novel structured illumination, near-field scanning, and nonlinear optics approaches, and on designing superlenses based on nanoplasmonics, metamaterials, transformation optics, and microsphere-assisted approaches. To this end, this Roadmap brings under the same umbrella researchers from the physics and biomedical optics communities in which such studies have often been developing separately. The ultimate intent of this paper is to create a vision for the current and future developments of LFSR imaging based on its physical mechanisms and to create a great opening for the series of articles in this field.

9.
Front Microbiol ; 13: 1028919, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36274719

RESUMO

Ulcerative colitis (UC) is challenging to treat and severely impacts patients and families. A previous study reported immunomodulatory and reduction of pro-inflammatory properties for the Lactiplantibacillus plantarum L15. This study aimed to analyze the preventive properties and mechanistic actions in an in vivo colitis model. The histopathological alteration, inflammation cytokines, and intestinal barrier function were analyzed. Subsequently, the cecal gut microbiota contents and products from different groups were detected. Finally, gene expressions related to the NF-κB signaling process were evaluated. L. plantarum L15 significantly decreased disease activity index (DAI), myeloperoxidase activity (MPO), pro-inflammatory cytokine (TNF-α, IL-1ß, and IL-6) level, and increased weight change, colon length, and production of inflammation-suppressing cytokines. Furthermore, this strain supplementation substantially increased ZO-1, Occludin, and Claudin-1, and MUC2 mRNA expression levels with a corresponding decrease in serum lipopolysaccharide and D-lactic acid contents. In addition, L. plantarum L15 improved gut microbiota composition and increased short-chain fatty acid (SCFAs) in the colon content, which significantly reduced the transfer of NF-κB p65 to the nucleus. Our findings provide a theoretical basis for L. plantarum L15 as a preventive candidate for UC.

10.
Opt Lett ; 47(17): 4560-4563, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36048704

RESUMO

We propose a novel, to the best of our knowledge, sensor for nanovibration detection based on a microsphere. The sensor consists of a stretched single-mode fiber and a 2 µm microsphere. The light from the optical fiber passes through the microsphere, forming a photonic nanojet (PNJ) phenomenon at the front of the microsphere. The evanescent field in the PNJ enhances the light reflected from the measured object to the single-mode fiber-microsphere probe (SMFMP). Results showed that the system can detect arbitrary nanovibration waveforms in real time with an SMFMP detection resolution of 1 nm. The voltage signal received and the vibration amplitude showed a good linear relationship within the range of 0-100 nm, with a sensitivity of 0.7 mV/nm and a linearity of more than 99%. The sensor is expected to have potential applications in the field of cell nanovibration detection.


Assuntos
Fibras Ópticas , Óptica e Fotônica , Microesferas , Fótons
11.
J Dairy Sci ; 105(8): 6405-6421, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35840401

RESUMO

Infant formula is currently an important food to cope with insufficient breastfeeding. Although 1,3-olein-2-palmitin (OPO) has been used in infant formula, its effects on the immune system, gut microbiota, and metabolites for infants remain unclear. This study constructed a mouse model of colonizing healthy infant feces using antibiotic treatment and fecal microbial transplantation. Thus, the gap between the infant formula supplemented with OPO and human milk in mouse serum biochemistry, immune system, intestinal microbiota, short-chain fatty acid production, and metabolites was evaluated. Our results showed that regarding IL-9, IL-10 levels, fecal secretory IgA, and endotoxin, formula supplemented with OPO and human milk types had comparable levels. Additionally, OPO slightly increased the content of short-chain fatty acids. The 16S rRNA gene sequence analysis and metabonomics analysis demonstrated that feeding different foods affects the gut microbiota of mice; in particular, supplementing formula feeding with OPO enriched the abundance of bifidobacteria. Furthermore, feeding different foods leads to unique intestinal content of metabolites, and the gut microbiota regulates the metabolites' differences. Our results reveal a brand new perspective of OPO regarding gut microbiota and metabolites.


Assuntos
Microbioma Gastrointestinal , Fórmulas Infantis , Animais , Ácidos Graxos Voláteis/análise , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Humanos , Fórmulas Infantis/química , Camundongos , Leite Humano/química , RNA Ribossômico 16S/análise
12.
Biomed Opt Express ; 12(11): 7113-7121, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34858703

RESUMO

There is a growing interest to use live cells to replace the widely used non-biological microsphere lenses. In this work, we demonstrate the use of yeast cells for such imaging purpose. Using fiber-based optical trapping technique, we trap a chain of three yeast cells and bring them to the vicinity of imaging objects. These yeast cells work as near-field magnifying lenses and simultaneously pick up the sub-diffraction information of the nanoscale objects under each cell and project them into the far-field. The experimental results demonstrated that Blu-ray disc of 100 nm feature can be clearly resolved in a parallel manner by each cell.

13.
Nanomaterials (Basel) ; 10(9)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32937784

RESUMO

We report new structured perovskite solar cells (PSCs) using solution-processed TiO2/Au nanorods/MgO composite electron transport layers (ETLs). The proposed method is facile, convenient, and effective. Briefly, Au nanorods (NRs) were prepared and introduced into mesoporous TiO2 ETLs. Then, thin MgO overlayers were grown on the Au NRs modified ETLs by wet spinning and pyrolysis of the magnesium salt. By simultaneous use of Au NRs and MgO, the power conversion efficiency of the PSC device increases from 14.7% to 17.4%, displaying over 18.3% enhancement, compared with the reference device without modification. Due to longitudinal plasmon resonances (LPRs) of gold nanorods, the embedded Au NRs exhibit the ability to significantly enhance the near-field and far-field (plasmonic scattering), increase the optical path length of incident photons in the device, and as a consequence, notably improve external quantum efficiency (EQE) at wavelengths above 600 nm and power conversion efficiency (PCE) of PSC solar cells. Meanwhile, the thin MgO overlayer also contributes to enhanced performance by reducing charge recombination in the solar cell. Theoretical calculations were carried out to elucidate the PV performance enhancement mechanisms.

14.
Appl Opt ; 59(8): 2641-2648, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32225809

RESUMO

Microsphere-based subwavelength imaging technique was first demonstrated in 2011. After nearly a decade of efforts, such technique has spawned numerous interests in fields such as laser nano-machining, imaging, sensing, and biological detection. For wider industrial-scale application of the technique, a robust and low-cost objective lens incorporating a microsphere lens is highly desired and sought by many researchers. In this work, we demonstrate a unibody microscope objective lens formed by tipping a high-index microsphere onto a plano-convex lens and subsequently fitting them into a conventional objective lens. We call this the plano-convex-microsphere (PCM) objective, which resembles the appearance and operation of an ordinary microscope objective while providing super-resolving power in discerning subwavelength 100 nm features ($\lambda /{4}.{7}$λ/4.7) in air and far-field conditions. The imaging performance of the PCM objective, along with the working distance, has been systematically investigated. It has a calibrated resolution of $\lambda /{3}$λ/3 in the far field, a numerical aperture of 1.57, and a working distance of 3.5 µm. With the assistance of a scanning process, larger-area imaging is realized. The PCM objective can be easily adapted to existing microscope systems and is appealing for commercialization.

15.
Opt Lett ; 45(5): 1168-1171, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32108797

RESUMO

A high-performance all-dielectric lens, formed by integrating a conventional plano-convex lens with a high-index microsphere lens (PCM), was developed for far-field super-resolution applications. The PCM lens features a theoretical resolution of $\sim\lambda /{2.5}$∼λ/2.5 in air with a WD $\sim 2\;{\unicode{x00B5} \rm m}$∼2µm away from the lens. When combined with a femtosecond laser, the actual patterning resolution can reach $\sim\lambda /{3.5}$∼λ/3.5. The unusual focusing properties were theoretically and experimentally verified, and direct laser nano-writing of arbitrary patterns and nanostructures on various substrates was demonstrated. This Letter can be naturally extended to other super-resolution applications, including imaging, sensing, and trapping, with the potential of developing next-generation low-cost direct laser nano-marking machine and super-resolution imaging nanoscope.

16.
Sci Rep ; 9(1): 20224, 2019 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882944

RESUMO

The Poynting vector plays a key role in electrodynamics as it is directly related to the power and the momentum carried by an electromagnetic wave. Based on the Lorenz-Mie theory, we report on the focusing effect of a spherical particle-lens by properly analysing the Poynting vector maps. Conventional two-dimensional (2D) maps showing Poynting vector magnitude and direction in a given plane cannot deliver information on three-dimensional (3D) directivity and vectorisation in key regions of singularities, such as vortexes and saddle points, due to poor expressiveness. In this article, an analytical 3D mapping technology is utilised to track the field-features passing through the singularities of the distribution of the Poynting vector in a spherically dielectric mesoscale particle-lens. We discovered that the spheres with the certain size parameters can stimulate extremely large field-intensity at singularities and then form two circular hotspots around the sphere poles. An astonishing large 'heart-shape' 3D Poynting vector circulation, which cannot be predicted by conventional 2D mapping analysis, is found to provide a great angular variation within an enormous range in these spheres. We anticipate that this effect will contribute to the field-enhancement phenomena, such as surface enhances Raman scattering, surface enhances absorption, super-resolution imaging and others.

17.
Nanotechnology ; 30(44): 445401, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31349240

RESUMO

We disclose novel photovoltaic device physics and present details of device mechanisms by investigating perovskite solar cells (PSCs) incorporating Cu9S5@SiO2 supraparticles (SUPs) into Spiro-OMeTAD based hole transport layers (HTLs). High quality colloidal Cu9S5 nanocrystals (NCs) were prepared using a hot-injection approach. Multiple Cu9S5 NCs were further embedded in silica to construct a Cu9S5@SiO2 SUP. Cu9S5@SiO2 SUPs were blended into Spiro-OMeTAD based HTLs with different weight ratios. Theoretical and experimental results show that the very strong light scattering or reflecting properties of Cu9S5@SiO2 SUPs blended in the PSC device in a proper proportion distribute to increase the light energy trapped within the device, leading to significant enhancement of light absorption in the active layer. Additionally, the incorporated Cu9S5@SiO2 SUPs can also promote the electrical conductivity and hole-transport capacity of the HTL. Significantly larger conductivity and higher hole injection efficiency were demonstrated in the HTM with the optimal weight ratios of Cu9S5@SiO2 SUPs. As a result, efficient Cu9S5 SUPs based PSC devices were obtained with average power conversion efficiency (PCE) of 18.21% at an optimal weight ratio of Cu9S5 SUPs. Compared with PSC solar cells without Cu9S5@SiO2 SUPs (of which the average PCE is 14.38%), a remarkable enhancement over 26% in average PCE was achieved. This study provides an innovative approach to efficiently promote the performance of PSC devices by employing optically stable, low-cost and green p-type semiconductor SUPs.

18.
Sci Rep ; 9(1): 20293, 2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31889112

RESUMO

We show that weakly dissipating dielectric spheres made of materials such as glass, quartz, etc. can support high order Fano resonances associated with internal Mie modes. These resonances, happening for specific values of the size parameter, yield field-intensity enhancement factors on the order of 104-107, which can be directly obtained from analytical calculations. Associated to these "super-resonances", we analyze the emergence of magnetic nanojets with giant magnetic fields, which might be attractive for many photonic applications.

19.
Opt Lett ; 43(4): 771-774, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29443990

RESUMO

It is well known that electromagnetic radiation propagates along a straight line, but this common sense was broken by the artificial curved light-the Airy beam. In this Letter, we demonstrate a new type of curved light beam besides the Airy beam, the so-called "photonic hook." This photonic hook is a curved high-intensity focus by a dielectric trapezoid particle illuminated by a plane wave. The difference between the phase velocity and the interference of the waves inside the particle causes the phenomenon of focus bending.

20.
Sensors (Basel) ; 17(12)2017 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-29207509

RESUMO

The security is a critical issue for business purposes. For example, the cloud meeting must consider strong security to maintain the communication privacy. Considering the scenario with cloud meeting, we apply extended chaotic map to present passwordless group authentication key agreement, termed as Passwordless Group Authentication Key Agreement (PL-GAKA). PL-GAKA improves the computation efficiency for the simple group password-based authenticated key agreement (SGPAKE) proposed by Lee et al. in terms of computing the session key. Since the extended chaotic map has equivalent security level to the Diffie-Hellman key exchange scheme applied by SGPAKE, the security of PL-GAKA is not sacrificed when improving the computation efficiency. Moreover, PL-GAKA is a passwordless scheme, so the password maintenance is not necessary. Short-term authentication is considered, hence the communication security is stronger than other protocols by dynamically generating session key in each cloud meeting. In our analysis, we first prove that each meeting member can get the correct information during the meeting. We analyze common security issues for the proposed PL-GAKA in terms of session key security, mutual authentication, perfect forward security, and data integrity. Moreover, we also demonstrate that communicating in PL-GAKA is secure when suffering replay attacks, impersonation attacks, privileged insider attacks, and stolen-verifier attacks. Eventually, an overall comparison is given to show the performance between PL-GAKA, SGPAKE and related solutions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA