Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell Signal ; 122: 111305, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39067836

RESUMO

OBJECTIVE: C-C motif chemokine receptor 7 (CCR7) significantly influences tumors onset and progression, yet its impact on the tumor microenvironment (TME) and specific mechanisms remain elusive. Inflammatory Cancer-Associated Fibroblasts (iCAF), a vital subtype of Cancer-Associated Fibroblasts (CAF), play a critical role in regulating the TME and tumor growth, though the underlying molecular mechanisms are not fully understood. This study aims to determine whether CCR7 participates in tumor regulation by iCAF and to elucidate the specific mechanisms involved. METHODS: Differential gene analysis of CAF subtypes in CCR7 knockout and wild-type groups was conducted using single-cell data. Animal models facilitated the extraction of primary iCAF cells via flow cytometry sorting. Changes in DUSP1 expression and the efficiency of lentivirus-mediated knockdown and overexpression were examined through qPCR and Western Blot. MOC1 and MOC2 cells were co-cultured with iCAF, with subsequent validation of changes in tumor cell proliferation, migration, and invasion using CCK8, EdU, and wound healing assays. ELISA was employed to detect changes in TGF-ß1 concentration in the iCAF supernatant. RESULTS: CAF was categorized into three subtypes-myCAF, iCAF, and apCAF-based on single-cell data. Analysis revealed a significant increase in DUSP1 expression in iCAF from the CCR7 knockout group, confirmed by in vitro experiments. Co-culturing MOC1 and MOC2 cells with iCAF exhibiting lentivirus-mediated DUSP1 knockdown resulted in inhibited tumor cell proliferation, invasion, and migration. In contrast, co-culture with iCAF overexpressing DUSP1 enhanced these capabilities. Additionally, the TGF-ß1 concentration in the supernatant increased in the DUSP1 knockdown iCAF group, whereas it decreased in the DUSP1 overexpression group. CONCLUSION: The CCR7/DUSP1 signaling axis regulates tumor growth by modulating TGF-ß1 secretion in iCAF.


Assuntos
Proliferação de Células , Fosfatase 1 de Especificidade Dupla , Receptores CCR7 , Transdução de Sinais , Animais , Humanos , Camundongos , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Movimento Celular , Fosfatase 1 de Especificidade Dupla/metabolismo , Fosfatase 1 de Especificidade Dupla/genética , Regulação Neoplásica da Expressão Gênica , Receptores CCR7/metabolismo , Receptores CCR7/genética , Microambiente Tumoral
2.
J Exp Clin Cancer Res ; 43(1): 94, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539232

RESUMO

BACKGROUND: Studies have shown that CCR7, an important inflammatory factor, can promote the proliferation and metastasis of oral squamous cell carcinoma (OSCC), but its role in the tumor microenvironment (TME) remains unclear. This paper explores the role of CCR7 in the TME of OSCC. METHODS: In this work, we constructed CCR7 gene knockout mice and OSCC mouse models. Single-cell RNA sequencing (scRNA-seq) and bioinformatics were used to analyze the differences in the OSCC microenvironment between three CCR7 gene knockout mice (KO) and three wild-type mice (WT). Immunohistochemistry, immunofluorescence staining, and flow cytometry were used to analyze the expression of key genes in significantly different cell types between the KO and WT groups. An in vitro experiment was used to verify the effect of CCR7 on M2 macrophage polarization. RESULTS: In the mouse OSCC models, the tumor growth rate in the KO group was significantly lower than that in the WT group. Eight main cell types (including tumor cells, fibroblasts, macrophages, granulocytes, T cells, endothelial cells, monocytes, and B cells) were identified by Seurat analysis. The scRNA-seq results showed that the proportion of tumor cells was lower, but the proportion of inflammatory cells was significantly higher in the KO group than in the WT group. CellPhoneDB analysis results indicated a strong interaction relationship between tumor cells and macrophages, T cells, fibroblasts, and endothelial cells. Functional enrichment results indicated that the expression level of the Dusp1 gene in the KO group was generally higher than that in the WT group in various cell types. Macrophage subclustering results indicated that the proportion of M2 macrophages in the KO group was lower than that in the WT group. In vitro experimental results showed that CCR7 can promote M2 macrophage polarization, thus promoting the proliferation, invasion and migration of OSCC cells. CONCLUSIONS: CCR7 gene knockout can significantly inhibit the growth of mouse oral squamous cell carcinoma by promoting the polarization of M2 macrophages.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Animais , Camundongos , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Neoplasias Bucais/patologia , Receptores CCR7/genética , Análise de Sequência de RNA , Carcinoma de Células Escamosas de Cabeça e Pescoço , Microambiente Tumoral/genética
3.
Eur J Med Res ; 28(1): 319, 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660064

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) is a global disease with a growing public health concern and is associated with a complex interplay of factors, including the microbiota and immune system. Resveratrol, a natural anti-inflammatory and antioxidant agent, is known to relieve IBD but the mechanism involved is largely unexplored. METHODS: This study examines the modulatory effect of resveratrol on intestinal immunity, microbiota, metabolites, and related functions and pathways in the BALB/c mice model of IBD. Mouse RAW264.7 macrophage cell line was used to further explore the involvement of the macrophage-arginine metabolism axis. The treatment outcome was assessed through qRT-PCR, western blot, immunofluorescence, immunohistochemistry, and fecal 16S rDNA sequencing and UHPLC/Q-TOF-MS. RESULTS: Results showed that resveratrol treatment significantly reduced disease activity index (DAI), retained mice weight, repaired colon and spleen tissues, upregulated IL-10 and the tight junction proteins Occludin and Claudin 1, and decreased pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α. Resveratrol reduced the number of dysregulated metabolites and improved the gut microbial community structure and diversity, including reversing changes in the phyla Bacteroidetes, Proteobacteria, and Firmicutes, increasing 'beneficial' genera, and decreasing potential pathogens such as Lachnoclostridium, Acinobacter, and Serratia. Arginine-proline metabolism was significantly different between the colitis-treated and untreated groups. In the colon mucosa and RAW264.7 macrophage, resveratrol regulated arginine metabolism towards colon protection by increasing Arg1 and Slc6a8 and decreasing iNOS. CONCLUSION: This uncovers a previously unknown mechanism of resveratrol treatment in IBD and provides the microbiota-macrophage-arginine metabolism axis as a potential therapeutic target for intestinal inflammation.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Animais , Camundongos , Resveratrol/farmacologia , Macrófagos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Arginina
4.
ACS Appl Mater Interfaces ; 15(15): 19545-19559, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37037677

RESUMO

The convergence of multivalley bands is originally believed to be beneficial for thermoelectric performance by enhancing the charge conductivity while preserving the Seebeck coefficients, based on the assumption that electron interband or intervalley scattering effects are totally negligible. In this work, we demonstrate that ß-Bi with a buckled honeycomb structure experiences a topological transition from a normal insulator to a Z2 topological insulator induced by spin-orbit coupling, which subsequently increases the band degeneracy and is probably beneficial for enhancement of the thermoelectric power factor for holes. Therefore, strong intervalley scattering can be observed in both band-convergent ß- and aw-Bi monolayers. Compared to ß-Bi, aw-Bi with a puckered black-phosphorus-like structure possesses high carrier mobilities with 318 cm2/(V s) for electrons and 568 cm2/(V s) for holes at room temperature. We also unveil extraordinarily strong fourth phonon-phonon interactions in these bismuth monolayers, significantly reducing their lattice thermal conductivities at room temperature, which is generally anomalous in conventional semiconductors. Finally, a high thermoelectric figure of merit (zT) can be achieved in both bismuth monolayers, especially for aw-Bi with an n-type zT value of 2.2 at room temperature. Our results suggest that strong fourth phonon-phonon interactions are crucial to a high thermoelectric performance in these materials, and two-dimensional bismuth is probably a promising thermoelectric material due to its enhanced band convergence induced by the topological transition.

5.
Discov Oncol ; 13(1): 67, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35904690

RESUMO

PURPOSE: This study aimed to investigate the impact of CC chemokine receptor 7 (CCR7) on the recruitment and polarization of tumor-associated macrophages (TAMs) in oral squamous cell carcinoma (OSCC). METHODS: We analyzed CCR7 expression pattern, clinicopathological significance, and its association with M2 macrophage infiltration in OSCC by bioinformatic methods. Small interfering RNA (siRNA) was utilized to silence CCR7 in OSCC cells. Conditioned media (CM) was harvested from transfected OSCC cells to establish a co-culture model of THP-1 derived macrophages and OSCC cells. Transwell assay and cell adhesion assay were performed to examine the effect of CCR7 on macrophages recruitment and adhesion. Cytoskeleton was labelled by phalloidin to observe macrophage morphological changes. Moreover, phenotypic alteration of macrophages was measured using quantitative real-time PCR (qRT-PCR), flow cytometry, and immunofluorescence (IF) staining. Ultimately, recombinant human CCL19 and CCL21 were added into the medium of THP-1 derived macrophages to explore their effects on polarization in vitro. RESULTS: In OSCC patients, the overexpression of CCR7 positively correlated with lymph node metastasis and M2 macrophage infiltration. Macrophage not only exhibited enhanced migration, invasion and adhesion abilities, but also appeared more spindle and branched in vitro when treated with CM from OSCC cells. However, these phenomena were abrogated with knockdown of CCR7. We also discovered that inhibition of CCR7 in OSCC cells suppressed TAMs polarization to an M2 phenotype. In addition, recombinant human CCL19 and CCL21 promoted macrophage M2-polarization in vitro. CONCLUSION: CCR7 in OSCC cells promoted recruitment and M2-polarization of THP-1 derived macrophages in vitro by regulating production of CCL19 and CCL21.

6.
Pathol Res Pract ; 216(6): 152951, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32334891

RESUMO

HNSCC is an aggressive tumor that often recurrence and metastasis. Although the treatment of HNSCC has improved over the past few decades, it is easy to recurrence even after comprehensive treatment. Ran is a small Ras-related GTPase belonging to the Ras superfamily. Recently, Ran has been proven to be an important oncogene involved in the metastatic progression of many human cancers. But there is seldom research on HNSCC about Ran. This study revealed the relationship between Ran expression and HNSCC characteristics, investigated the expression and role of Ran in HNSCC tissues and cells by means of immunohistochemistry, qRT-PCR, CCK-8, FCM and transwell migration assays. The results indicated that HNSCC tissues had significantly higher Ran expression than adjacent non-tumor tissues. The overall survival rate was significantly lower in patients with Ran-positive tumors than in those with Ran-negative tumors. Moreover, Ran was positively correlated with tumor grade, lymph node metastasis and recurrence. Ran was also high expressed in the HNSCC cell lines (PCI-37B and SCC9) and down regulated of Ran could evidently inhibit their proliferation, migration and down-regulate of Met protein. In conclusion, our findings suggested Ran could promote the proliferation and migration ability of HNSCC cells. Ran may play an important role in the development of HNSCC and may serve as a novel prognostic indicator of HNSCC.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Proteína ran de Ligação ao GTP/metabolismo , Adulto , Idoso , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA