Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol Lett ; 11(8): 786-797, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39156923

RESUMO

Per- and polyfluoroalkyl substances (PFASs) are a class of synthetic organic chemicals of global concern. A group of 36 scientists and regulators from 18 countries held a hybrid workshop in 2022 in Zürich, Switzerland. The workshop, a sequel to a previous Zürich workshop held in 2017, deliberated on progress in the last five years and discussed further needs for cooperative scientific research and regulatory action on PFASs. This review reflects discussion and insights gained during and after this workshop and summarizes key signs of progress in science and policy, ongoing critical issues to be addressed, and possible ways forward. Some key take home messages include: 1) understanding of human health effects continues to develop dramatically, 2) regulatory guidelines continue to drop, 3) better understanding of emissions and contamination levels is needed in more parts of the world, 4) analytical methods, while improving, still only cover around 50 PFASs, and 5) discussions of how to group PFASs for regulation (including subgroupings) have gathered momentum with several jurisdictions proposing restricting a large proportion of PFAS uses. It was concluded that more multi-group exchanges are needed in the future and that there should be a greater diversity of participants at future workshops.

2.
Environ Sci Technol ; 58(32): 14059-14061, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39135505

Assuntos
Planeta Terra
3.
Environ Sci Technol ; 58(31): 13748-13759, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39049709

RESUMO

Biobased chemicals, crucial for the net-zero chemical industry, rely on lignocellulose residues as a major feedstock. However, its availability and environmental impacts vary greatly across regions. By 2050, we estimate that 3.0-5.2 Gt of these residues will be available from the global forest and agricultural sectors, with key contributions from Brazil, China, India, and the United States. This supply satisfies the growing global feedstock demands for plastics when used efficiently. Forest residues have 84% lower climate change impacts than agricultural residues on average globally but double the land-use-related biodiversity loss. Biobased plastics may reduce climate change impacts relative to fossil-based alternatives but are insufficient to fulfill net-zero targets. In addition, they pose greater challenges in terms of biodiversity loss and water stress. Avoiding feedstock sourcing from biodiversity-rich areas could halve lignocellulose residues-related biodiversity loss without significantly compromising availability. Improvements in region-specific feedstock sourcing, agricultural management and biomass utilization technologies are warranted for transitioning toward a sustainable chemical industry.


Assuntos
Agricultura , Lignina , Lignina/química , Indústria Química , Biomassa , Biodiversidade , Mudança Climática , Florestas
4.
Environ Sci Eur ; 36(1): 102, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784824

RESUMO

Background: Persistent, mobile and toxic (PMT), or very persistent and very mobile (vPvM) substances are a wide class of chemicals that are recalcitrant to degradation, easily transported, and potentially harmful to humans and the environment. Due to their persistence and mobility, these substances are often widespread in the environment once emitted, particularly in water resources, causing increased challenges during water treatment processes. Some PMT/vPvM substances such as GenX and perfluorobutane sulfonic acid have been identified as substances of very high concern (SVHCs) under the European Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) regulation. With hundreds to thousands of potential PMT/vPvM substances yet to be assessed and managed, effective and efficient approaches that avoid a case-by-case assessment and prevent regrettable substitution are necessary to achieve the European Union's zero-pollution goal for a non-toxic environment by 2050. Main: Substance grouping has helped global regulation of some highly hazardous chemicals, e.g., through the Montreal Protocol and the Stockholm Convention. This article explores the potential of grouping strategies for identifying, assessing and managing PMT/vPvM substances. The aim is to facilitate early identification of lesser-known or new substances that potentially meet PMT/vPvM criteria, prompt additional testing, avoid regrettable use or substitution, and integrate into existing risk management strategies. Thus, this article provides an overview of PMT/vPvM substances and reviews the definition of PMT/vPvM criteria and various lists of PMT/vPvM substances available. It covers the current definition of groups, compares the use of substance grouping for hazard assessment and regulation, and discusses the advantages and disadvantages of grouping substances for regulation. The article then explores strategies for grouping PMT/vPvM substances, including read-across, structural similarity and commonly retained moieties, as well as the potential application of these strategies using cheminformatics to predict P, M and T properties for selected examples. Conclusions: Effective substance grouping can accelerate the assessment and management of PMT/vPvM substances, especially for substances that lack information. Advances to read-across methods and cheminformatics tools are needed to support efficient and effective chemical management, preventing broad entry of hazardous chemicals into the global market and favouring safer and more sustainable alternatives.

5.
ACS Sustain Chem Eng ; 12(7): 2700-2708, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38389904

RESUMO

Millions of chemicals have been designed; however, their product carbon footprints (PCFs) are largely unknown, leaving questions about their sustainability. This general lack of PCF data is because the data needed for comprehensive environmental analyses are typically not available in the early molecular design stages. Several predictive tools have been developed to estimate the PCF of chemicals, which are applicable to only a narrow range of common chemicals and have limited predictive ability. Here, we propose FineChem 2, which is based on a novel transformer framework and first-hand industry data, for accurately predicting the PCF of chemicals. Compared to previous tools, FineChem 2 demonstrates significantly better predictive power, and its applicability domains are improved by ∼75% on a diverse set of chemicals on the global market, including the high-production-volume chemicals identified by regulators, daily chemicals, and chemical additives in food and plastics. In addition, through better interpretability from the attention mechanism, FineChem 2 may successfully identify PCF-intensive substructures and critical raw materials of chemicals, providing insights into the design of more sustainable molecules and processes. Therefore, we highlight FineChem 2 for estimating the PCF of chemicals, contributing to advancements in the sustainable transition of the global chemical industry.

6.
Environ Sci Technol ; 58(4): 1894-1907, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38241221

RESUMO

Hazardous chemicals in building and construction plastics can lead to health risks due to indoor exposure and may contaminate recycled materials. We systematically sampled new polyvinyl chloride floorings on the Swiss market (n = 151). We performed elemental analysis by X-ray fluorescence, targeted and suspect gas chromatography-mass spectrometry analysis of ortho-phthalates and alternative plasticizers, and bioassay tests for cytotoxicity and oxidative stress, and endocrine, mutagenic, and genotoxic activities (for selected samples). Surprisingly, 16% of the samples contained regulated chemicals above 0.1 wt %, mainly lead and bis(2-ethylhexyl) phthalate (DEHP). Their presence is likely related to the use of recycled PVC in new flooring, highlighting that uncontrolled recycling can delay the phase-out of hazardous chemicals. Besides DEHP, 29% of the samples contained other ortho-phthalates (mainly diisononyl and diisodecyl phthalates, DiNP and DiDP) above 0.1 wt %, and 17% of the samples indicated a potential to cause biological effects. Considering some overlap between these groups, they together make up an additional 35% of the samples of potential concern. Moreover, both suspect screening and bioassay results indicate the presence of additional potentially hazardous substances. Overall, our study highlights the urgent need to accelerate the phase-out of hazardous substances, increase the transparency of chemical compositions in plastics to protect human and ecosystem health, and enable the transition to a safe and sustainable circular economy.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Humanos , Plastificantes , Dietilexilftalato/análise , Ecossistema , Ácidos Ftálicos/análise , Plásticos , Substâncias Perigosas/análise
7.
One Earth ; 6(8)2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38264630

RESUMO

Access to a clean and healthy environment is a human right and a prerequisite for maintaining a sustainable ecosystem. Experts across domains along the chemical life cycle have traditionally operated in isolation, leading to limited connectivity between upstream chemical innovation to downstream development of water-treatment technologies. This fragmented and historically reactive approach to managing emerging contaminants has resulted in significant externalized societal costs. Herein, we propose an integrated data-driven framework to foster proactive action across domains to effectively address chemical water pollution. By implementing this integrated framework, it will not only enhance the capabilities of experts in their respective fields but also create opportunities for novel approaches that yield co-benefits across multiple domains. To successfully operationalize the integrated framework, several concerted efforts are warranted, including adopting open and FAIR (findable, accessible, interoperable, and reusable) data practices, developing common knowledge bases/platforms, and staying vigilant against new substance "properties" of concern.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA