Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36772064

RESUMO

Due to the wide application of wearable electronic devices in daily life, research into flexible electronics has become very attractive. Recently, various polymer-based sensors have emerged with great sensing performance and excellent extensibility. It is well known that different structural designs each confer their own unique, great impacts on the properties of materials. For polymer-based pressure/strain sensors, different structural designs determine different response-sensing mechanisms, thus showing their unique advantages and characteristics. This paper mainly focuses on polymer-based pressure-sensing materials applied in different microstructures and reviews their respective advantages. At the same time, polymer-based pressure sensors with different microstructures, including with respect to their working mechanisms, key parameters, and relevant operating ranges, are discussed in detail. According to the summary of its performance and mechanisms, different morphologies of microstructures can be designed for a sensor according to its performance characteristics and application scenario requirements, and the optimal structure can be adjusted by weighing and comparing sensor performances for the future. Finally, a conclusion and future perspectives are described.

2.
Chem Sci ; 12(47): 15750-15756, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-35003607

RESUMO

The lack of an efficient, low-cost sequencing method has long been a significant bottleneck in protein research and applications. In recent years, the nanopore platform has emerged as a fast and inexpensive method for single-molecule nucleic acid sequencing, but attempts to apply it to protein/peptide sequencing have resulted in limited success. Here we report a strategy to control peptide translocation through the MspA nanopore, which could serve as the first step toward strand peptide sequencing. By conjugating the target peptide to a helicase-regulated handle-ssDNA, we achieved a read length of up to 17 amino acids (aa) and demonstrated the feasibility of distinguishing between amino acid residues of different charges or between different phosphorylation sites. Further improvement of resolution may require engineering MspA-M2 to reduce its constriction zone's size and stretch the target peptide inside the nanopore to minimize random thermal motion. We believe that our method in this study can significantly accelerate the development and commercialization of nanopore-based peptide sequencing technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA