Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cancer Discov ; 14(6): 994-1017, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38593348

RESUMO

RAS-driven cancers comprise up to 30% of human cancers. RMC-6236 is a RAS(ON) multi-selective noncovalent inhibitor of the active, GTP-bound state of both mutant and wild-type variants of canonical RAS isoforms with broad therapeutic potential for the aforementioned unmet medical need. RMC-6236 exhibited potent anticancer activity across RAS-addicted cell lines, particularly those harboring mutations at codon 12 of KRAS. Notably, oral administration of RMC-6236 was tolerated in vivo and drove profound tumor regressions across multiple tumor types in a mouse clinical trial with KRASG12X xenograft models. Translational PK/efficacy and PK/PD modeling predicted that daily doses of 100 mg and 300 mg would achieve tumor control and objective responses, respectively, in patients with RAS-driven tumors. Consistent with this, we describe here objective responses in two patients (at 300 mg daily) with advanced KRASG12X lung and pancreatic adenocarcinoma, respectively, demonstrating the initial activity of RMC-6236 in an ongoing phase I/Ib clinical trial (NCT05379985). SIGNIFICANCE: The discovery of RMC-6236 enables the first-ever therapeutic evaluation of targeted and concurrent inhibition of canonical mutant and wild-type RAS-GTP in RAS-driven cancers. We demonstrate that broad-spectrum RAS-GTP inhibition is tolerable at exposures that induce profound tumor regressions in preclinical models of, and in patients with, such tumors. This article is featured in Selected Articles from This Issue, p. 897.


Assuntos
Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas p21(ras)/genética , Feminino , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Guanosina Trifosfato/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mutação , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Masculino
2.
Science ; 381(6659): 794-799, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37590355

RESUMO

The discovery of small-molecule inhibitors requires suitable binding pockets on protein surfaces. Proteins that lack this feature are considered undruggable and require innovative strategies for therapeutic targeting. KRAS is the most frequently activated oncogene in cancer, and the active state of mutant KRAS is such a recalcitrant target. We designed a natural product-inspired small molecule that remodels the surface of cyclophilin A (CYPA) to create a neomorphic interface with high affinity and selectivity for the active state of KRASG12C (in which glycine-12 is mutated to cysteine). The resulting CYPA:drug:KRASG12C tricomplex inactivated oncogenic signaling and led to tumor regressions in multiple human cancer models. This inhibitory strategy can be used to target additional KRAS mutants and other undruggable cancer drivers. Tricomplex inhibitors that selectively target active KRASG12C or multiple RAS mutants are in clinical trials now (NCT05462717 and NCT05379985).


Assuntos
Produtos Biológicos , Ciclofilina A , Imunofilinas , Chaperonas Moleculares , Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Cisteína/química , Cisteína/genética , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais , Ciclofilina A/química , Ciclofilina A/metabolismo , Imunofilinas/química , Imunofilinas/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética
3.
J Med Chem ; 66(1): 149-169, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36533617

RESUMO

Hyperactivation of mTOR kinase by mutations in the PI3K/mTOR pathway or by crosstalk with other mutant cancer drivers, such as RAS, is a feature of many tumors. Multiple allosteric inhibitors of mTORC1 and orthosteric dual inhibitors of mTORC1 and mTORC2 have been developed as anticancer drugs, but their clinical utility has been limited. To address these limitations, we have developed a novel class of "bi-steric inhibitors" that interact with both the orthosteric and the allosteric binding sites in order to deepen the inhibition of mTORC1 while also preserving selectivity for mTORC1 over mTORC2. In this report, we describe the discovery and preclinical profile of the development candidate RMC-5552 and the in vivo preclinical tool compound RMC-6272. We also present evidence that selective inhibition of mTORC1 in combination with covalent inhibition of KRASG12C shows increased antitumor activity in a preclinical model of KRASG12C mutant NSCLC that exhibits resistance to KRASG12C inhibitor monotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proliferação de Células , Serina-Treonina Quinases TOR , Alvo Mecanístico do Complexo 2 de Rapamicina , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/química , Linhagem Celular Tumoral
5.
Nat Chem Biol ; 17(10): 1065-1074, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34168367

RESUMO

The clinical benefits of pan-mTOR active-site inhibitors are limited by toxicity and relief of feedback inhibition of receptor expression. To address these limitations, we designed a series of compounds that selectively inhibit mTORC1 and not mTORC2. These 'bi-steric inhibitors' comprise a rapamycin-like core moiety covalently linked to an mTOR active-site inhibitor. Structural modification of these components modulated their affinities for their binding sites on mTOR and the selectivity of the bi-steric compound. mTORC1-selective compounds potently inhibited 4EBP1 phosphorylation and caused regressions of breast cancer xenografts. Inhibition of 4EBP1 phosphorylation was sufficient to block cancer cell growth and was necessary for maximal antitumor activity. At mTORC1-selective doses, these compounds do not alter glucose tolerance, nor do they relieve AKT-dependent feedback inhibition of HER3. Thus, in preclinical models, selective inhibitors of mTORC1 potently inhibit tumor growth while causing less toxicity and receptor reactivation as compared to pan-mTOR inhibitors.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Desenho de Fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Relação Estrutura-Atividade
7.
Bioorg Med Chem Lett ; 30(21): 127499, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32858124

RESUMO

Agonism of the endothelial receptor APJ (putative receptor protein related to AT1; AT1: angiotensin II receptor type 1) has the potential to ameliorate congestive heart failure by increasing cardiac output without inducing hypertrophy. Although the endogenous agonist, pyr-apelin-13 (1), has shown beneficial APJ-mediated inotropic effects in rats and humans, such effects are short-lived given its extremely short half-life. Here, we report the conjugation of 1 to a fatty acid, providing a lipidated peptide (2) with increased stability that retains inotropic activity in an anesthetized rat myocardial infarction (MI) model. We also report the preparation of a library of 15-mer APJ agonist peptide-lipid conjugates, including adipoyl-γGlu-OEG-OEG-hArg-r-Q-hArg-P-r-NMeLeuSHK-G-Oic-pIPhe-P-DBip-OH (17), a potent APJ agonist with high plasma protein binding and a half-life suitable for once-daily subcutaneous dosing in rats. A correlation between subcutaneous absorption rate and lipid length/type of these conjugates is also reported.


Assuntos
Receptores de Apelina/agonistas , Lipídeos/farmacologia , Infarto do Miocárdio/tratamento farmacológico , Peptídeos/farmacologia , Animais , Receptores de Apelina/metabolismo , Relação Dose-Resposta a Droga , Injeções Intravenosas , Lipídeos/administração & dosagem , Lipídeos/química , Estrutura Molecular , Infarto do Miocárdio/metabolismo , Peptídeos/administração & dosagem , Peptídeos/química , Ratos , Relação Estrutura-Atividade
8.
Drug Metab Dispos ; 48(6): 508-514, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32193357

RESUMO

Experiments designed to identify the mechanism of cytochrome P450 inactivation are critical to drug discovery. Small molecules irreversibly inhibit P450 enzymatic activity via two primary mechanisms: apoprotein adduct formation or heme modification. Understanding the interplay between chemical structures of reactive electrophiles and the impact on CYP3A4 structure and function can ultimately provide insights into drug design to minimize P450 inactivation. In a previous study, raloxifene and N-(1-pyrene) iodoacetamide (PIA) alkylated CYP3A4 in vitro; however, only raloxifene influenced enzyme activity. Here, two alkylating agents with cysteine selectivity, PIA and pyrene maleimide (PM), were used to investigate this apparent compound-dependent disconnect between CYP3A4 protein alkylation and activity loss. The compound's effect on 1) enzymatic activity, 2) carbon monoxide (CO) binding capacity, 3) intact heme content, and 4) protein conformation were measured. Results showed that PM had a large time-dependent loss of enzyme activity, whereas PIA did not. The differential effect on enzymatic activity between PM and PIA was mirrored in the CO binding data. Despite disruption of CO binding, neither compound affected the heme concentrations, inferring there was no destruction or alkylation of the heme. Lastly, differential scanning fluorescence showed PM-treated CYP3A4 caused a shift in the onset temperature required to induce protein aggregation, which was not observed for CYP3A4 treated with PIA. In conclusion, alkylation of CYP3A4 apoprotein can have a variable impact on catalytic activity, CO binding, and protein conformation that may be compound-dependent. These results highlight the need for careful interpretation of experimental results aimed at characterizing the nature of P450 enzyme inactivation. SIGNIFICANCE STATEMENT: Understanding the mechanism of CYP3A4 time-dependent inhibition is critical to drug discovery. In this study, we use two cysteine-targeting electrophiles to probe how subtle variation in inhibitor structure may impact the mechanism of CYP3A4 time-dependent inhibition and confound interpretation of traditional diagnostic experiments. Ultimately, this simplified system was used to reveal insights into CYP3A4 biochemical behavior. The insights may have implications that aid in understanding the susceptibility of CYP enzymes to the effects of electrophilic intermediates generated via bioactivation.


Assuntos
Apoproteínas/metabolismo , Inibidores do Citocromo P-450 CYP3A/farmacologia , Citocromo P-450 CYP3A/metabolismo , Alquilação/efeitos dos fármacos , Apoproteínas/antagonistas & inibidores , Apoproteínas/química , Monóxido de Carbono/metabolismo , Cisteína/química , Citocromo P-450 CYP3A/química , Inibidores do Citocromo P-450 CYP3A/química , Ensaios Enzimáticos , Iodoacetamida/análogos & derivados , Iodoacetamida/química , Iodoacetamida/farmacologia , Maleimidas/química , Maleimidas/farmacologia , Oxirredução/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , Proteínas Recombinantes/metabolismo
9.
Am J Respir Crit Care Med ; 202(3): 371-382, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32186892

RESUMO

Rationale: Vitamin D deficiency is common in patients with asthma and chronic obstructive pulmonary disease (COPD). Low 25-hydroxyvitamin D (25[OH]D) levels may represent a cause or a consequence of these conditions.Objectives: To determine whether vitamin D metabolism is altered in asthma or COPD.Methods: We conducted a longitudinal study in 186 adults to determine whether the 25(OH)D response to six oral doses of 3 mg vitamin D3, administered over 1 year, differed between those with asthma or COPD versus control subjects. Serum concentrations of vitamin D3, 25(OH)D3, and 1α,25-dihydroxyvitamin D3 (1α,25[OH]2D3) were determined presupplementation and postsupplementation in 93 adults with asthma, COPD, or neither condition, and metabolite-to-parent compound molar ratios were compared between groups to estimate hydroxylase activity. Additionally, we analyzed 14 datasets to compare expression of 1α,25(OH)2D3-inducible gene expression signatures in clinical samples taken from adults with asthma or COPD versus control subjects.Measurements and Main Results: The mean postsupplementation 25(OH)D increase in participants with asthma (20.9 nmol/L) and COPD (21.5 nmol/L) was lower than in control subjects (39.8 nmol/L; P = 0.001). Compared with control subjects, patients with asthma and COPD had lower molar ratios of 25(OH)D3-to-vitamin D3 and higher molar ratios of 1α,25(OH)2D3-to-25(OH)D3 both presupplementation and postsupplementation (P ≤ 0.005). Intergroup differences in 1α,25(OH)2D3-inducible gene expression signatures were modest and variable if statistically significant.Conclusions: Attenuation of the 25(OH)D response to vitamin D supplementation in asthma and COPD associated with reduced molar ratios of 25(OH)D3-to-vitamin D3 and increased molar ratios of 1α,25(OH)2D3-to-25(OH)D3 in serum, suggesting that vitamin D metabolism is dysregulated in these conditions.


Assuntos
Asma/metabolismo , Calcifediol/metabolismo , Calcitriol/metabolismo , Colecalciferol/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Vitaminas/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , Estudos de Casos e Controles , Colecalciferol/farmacocinética , Colestanotriol 26-Mono-Oxigenase/genética , Citocromo P-450 CYP3A/genética , Família 2 do Citocromo P450/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Polimorfismo de Nucleotídeo Único , Ensaios Clínicos Controlados Aleatórios como Assunto , Proteína de Ligação a Vitamina D/genética , Vitamina D3 24-Hidroxilase/genética , Vitaminas/farmacocinética
10.
J Clin Endocrinol Metab ; 104(12): 5831-5839, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31199458

RESUMO

CONTEXT: Vitamin D2 and vitamin D3 have been hypothesized to exert differential effects on vitamin D metabolism. OBJECTIVE: To compare the influence of administering vitamin D2 vs vitamin D3 on metabolism of vitamin D3. METHODS: We measured baseline and 4-month serum concentrations of vitamin D3, 25-hydroxyvitamin D3 [25(OH)D3], 25-hydroxyvitamin D2, 24R,25-dihydroxyvitamin D3 [24R,25(OH)2D3], 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], and 4ß,25-dihydroxyvitamin D3 [4ß,25(OH)2D3] in 52 adults randomized to receive a total of four oral bolus doses of 2.5 mg vitamin D2 (n = 28) or vitamin D3 (n = 24) over four months. Metabolite-to-parent compound ratios were calculated to estimate hydroxylase activity. Pairwise before vs after comparisons were made to evaluate effects of vitamin D2 and vitamin D3 on metabolism of vitamin D. Mean postsupplementation metabolite-to-parent ratios were then compared between groups. RESULTS: Vitamin D2 was less effective than vitamin D3 in elevating total serum 25(OH)D concentration. Vitamin D2 suppressed mean four-month serum concentrations of 25(OH)D3, 24R,25(OH)2D3, 1α,25(OH)2D3, and 4ß,25(OH)2D3 and mean ratios of 25(OH)D3 to D3 and 1α,25(OH)2D3 to 25(OH)D3, while increasing the mean ratio of 24R,25(OH)2D3 to 25(OH)D3. Vitamin D3 increased mean four-month serum concentrations of 25(OH)D3, 24R,25(OH)2D3, 1α,25(OH)2D3, and 4ß,25(OH)2D3 and the mean ratio of 24R,25(OH)2D3 to 25(OH)D3. Participants receiving vitamin D2 had lower mean postsupplementation ratios of 25(OH)D3 to vitamin D3 and 1α,25(OH)2D3 to 25(OH)D3 than those receiving vitamin D3. Mean postsupplementation ratios of 24R,25(OH)2D3 to 25(OH)D3 and 4ß,25(OH)2D3 to 25(OH)D3 did not differ between groups. CONCLUSIONS: Bolus-dose vitamin D2 is less effective than bolus-dose vitamin D3 in elevating total serum 25(OH)D concentration. Administration of vitamin D2 reduces 25-hydroxylation of vitamin D3 and 1-α hydroxylation of 25(OH)D3, while increasing 24R-hydroxylation of 25(OH)D3.


Assuntos
Colecalciferol/farmacologia , Suplementos Nutricionais , Ergocalciferóis/farmacologia , Vitaminas/farmacologia , 24,25-Di-Hidroxivitamina D 3/sangue , 25-Hidroxivitamina D 2/sangue , Adulto , Idoso , Calcifediol/sangue , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
11.
Drug Metab Dispos ; 46(4): 367-379, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29343609

RESUMO

Metabolism of 25-hydroxyvitamin D3 (25OHD3) plays a central role in regulating the biologic effects of vitamin D in the body. Although cytochrome P450-dependent hydroxylation of 25OHD3 has been extensively investigated, limited information is available on the conjugation of 25OHD3 In this study, we report that 25OHD3 is selectively conjugated to 25OHD3-3-O-sulfate by human sulfotransferase 2A1 (SULT2A1) and that the liver is a primary site of metabolite formation. At a low (50 nM) concentration of 25OHD3, 25OHD3-3-O-sulfate was the most abundant metabolite, with an intrinsic clearance approximately 8-fold higher than the next most efficient metabolic route. In addition, 25OHD3 sulfonation was not inducible by the potent human pregnane X receptor agonist, rifampicin. The 25OHD3 sulfonation rates in a bank of 258 different human liver cytosols were highly variable but correlated with the rates of dehydroepiandrosterone sulfonation. Further analysis revealed a significant association between a common single nucleotide variant within intron 1 of SULT2A1 (rs296361; minor allele frequency = 15% in whites) and liver cytosolic SULT2A1 content as well as 25OHD3-3-O-sulfate formation rate, suggesting that variation in the SULT2A1 gene contributes importantly to interindividual differences in vitamin D homeostasis. Finally, 25OHD3-3-O-sulfate exhibited high affinity for the vitamin D binding protein and was detectable in human plasma and bile but not in urine samples. Thus, circulating concentrations of 25OHD3-3-O-sulfate appear to be protected from rapid renal elimination, raising the possibility that the sulfate metabolite may serve as a reservoir of 25OHD3 in vivo, and contribute indirectly to the biologic effects of vitamin D.


Assuntos
Calcifediol/sangue , Calcifediol/metabolismo , Sulfatos/metabolismo , Sulfotransferases/metabolismo , Vitamina D/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Sistema Enzimático do Citocromo P-450/metabolismo , Feminino , Humanos , Hidroxilação/fisiologia , Lactente , Cinética , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Receptor de Pregnano X , Receptores de Esteroides/metabolismo , Adulto Jovem
12.
Anal Bioanal Chem ; 410(5): 1595-1606, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29256080

RESUMO

Formation of reactive metabolites that are capable to react with macromolecules could contribute to drug-induced toxicity. As part of early drug screening strategy to support small molecule structure-activity relationship analysis, glutathione (GSH) trapping is commonly used for the detection of reactive metabolites. When trapped, the GSH conjugates can be characterized using mass spectrometry (MS)-based methods. In the present study, an efficient method was developed for rapid identification and characterization of GSH-trapped metabolites with a single run using a quadrupole orbitrap high-resolution mass spectrometer. The selective ion monitoring of m/z 272.0888, a characteristic product ion corresponding to deprotonated γ-glutamic-dehydroalanyl-glycine in the negative ionization mode, was applied as a survey scan leveraging all ion fragmentation mode using in-source collision-induced dissociation. Detection of the extracted product ions within 5.0 Δppm mass accuracy indicated the presence of putative GSH conjugates. Incorporation of fast polarity switching option and multiple data-dependent acquisition scans in a single cycle allowed the determination of accurate mass and multiple MS/MS spectra of GSH conjugates in both negative and positive ionization modes, which featured rich fragments for structural characterization. The effectiveness of this method was evaluated with four model compounds including acetaminophen, clozapine, diclofenac, and nefazodone in both liver microsome and cryopreserved hepatocyte incubations. Successful characterization of multiple GSH conjugates in each case validated this method. Overall, this approach provided a sensitive tool for rapid detection and characterization of GSH conjugates in vitro. Notably, this method could be suitable for high-throughput screening of reactive metabolites in the early drug discovery process. Graphical abstract Sensitive detection and characterization of glutatione conjugates using a high-resolution quadrupole orbitrap mass spectrometer.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Glutationa/química , Cromatografia Líquida , Diclofenaco/química , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Microssomos Hepáticos , Estrutura Molecular , Espectrometria de Massas em Tandem/métodos , Fatores de Tempo
13.
Artigo em Inglês | MEDLINE | ID: mdl-28622619

RESUMO

25-hydroxyvitamin D3-3-sulfate (25-OHD3-S) and 25-hydroxyvitamin D3-3-glucuronide (25-OHD3-G) are major conjugative metabolites of vitamin D3 found in the systemic circulation and potentially important reservoirs for 25-hydroxyvitamin D3. Simultaneous and accurate quantification of these metabolites could advance assessment of the impact of vitamin D3 on health and disease. In this study, a highly sensitive and accurate liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for simultaneous quantification of 25-OHD3-S and 25-OHD3-G in human serum or plasma. Following protein precipitation, the analytes of interest were partially purified by solid-phase extraction and subjected to derivatization with 4-(4'-dimethylaminophenyl)-1,2,4-triazoline-3,5-dione (DAPTAD). Quantification of the analytes was based on multiple reaction monitoring (MRM) operated in the positive ion mode, and deuterated internal standards were used for each conjugative metabolite. Applying this method to the analysis of 25-OHD3-S and 25-OHD3-G concentrations in human serum or plasma samples achieved satisfactory reproducibility, accuracy and sensitivity. We subsequently used this method to simultaneously determine serum concentrations of the two metabolites in archived samples from a rifampin treatment study. Drug treatment had no effect on metabolite concentrations, but significantly increased the 25-OHD3-S/25-OHD3 concentration ratio (p=0.01). The availability of this new method should improve sample throughput and our ability to quantify and monitor circulating 25-OHD3-S and 25-OHD3-G concentrations.


Assuntos
Calcifediol/análogos & derivados , Calcifediol/sangue , Glucuronídeos/sangue , Cromatografia Líquida/métodos , Humanos , Modelos Lineares , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Extração em Fase Sólida , Espectrometria de Massas em Tandem/métodos
14.
Drug Metab Dispos ; 45(7): 712-720, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28428366

RESUMO

Oprozomib is an oral proteasome inhibitor currently under investigation in patients with hematologic malignancies or solid tumors. Oprozomib elicits potent pharmacological actions by forming a covalent bond with the active site N-terminal threonine of the 20S proteasome. Oprozomib has a short half-life across preclinical species and in patients due to systemic clearance via metabolism. Potential for drug-drug interactions (DDIs) could alter the exposure of this potent therapeutic; therefore, a thorough investigation of pathways responsible for metabolism is required. In the present study, the major drug-metabolizing enzyme responsible for oprozomib metabolism was identified in vitro. A diol of oprozomib was found to be the predominant metabolite in human hepatocytes, which formed via direct epoxide hydrolysis. Using recombinant epoxide hydrolases (EHs) and selective EH inhibitors in liver microsomes, microsomal EH (mEH) but not soluble EH (sEH) was found to be responsible for oprozomib diol formation. Coincubation with 2-nonylsulfanyl-propionamide, a selective mEH inhibitor, resulted in a significant decrease in oprozomib disappearance (>80%) with concurrent complete blockage of diol formation in human hepatocytes. On the contrary, a selective sEH inhibitor did not affect oprozomib metabolism. Pretreatment of hepatocytes with the pan-cytochrome P450 (P450) inhibitor 1-aminobenzotriazole resulted in a modest reduction (∼20%) of oprozomib metabolism. These findings indicated that mEH plays a predominant role in oprozomib metabolism. Further studies may be warranted to determine whether drugs that are mEH inhibitors cause clinically significant DDIs with oprozomib. On the other hand, pharmacokinetics of oprozomib is unlikely to be affected by coadministered P450 and sEH inhibitors and/or inducers.


Assuntos
Clorpromazina/análogos & derivados , Sistema Enzimático do Citocromo P-450/metabolismo , Epóxido Hidrolases/metabolismo , Inibidores de Proteassoma/metabolismo , Administração Oral , Adulto , Clorpromazina/metabolismo , Interações Medicamentosas/fisiologia , Feminino , Meia-Vida , Hepatócitos/metabolismo , Humanos , Masculino , Microssomos Hepáticos/metabolismo , Pessoa de Meia-Idade , Oxirredução , Proteínas Recombinantes/metabolismo , Triazóis/metabolismo , Adulto Jovem
15.
Public Health Nutr ; 20(10): 1738-1745, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27465921

RESUMO

OBJECTIVE: To measure the trends in traditional marine food intake and serum vitamin D levels in Alaska Native women of childbearing age (20-29 years old) from the 1960s to the present. DESIGN: We measured a biomarker of traditional food intake, the δ15N value, and vitamin D level, as 25-hydroxycholecalciferol (25(OH)D3) concentration, in 100 serum samples from 20-29-year-old women archived in the Alaska Area Specimen Bank, selecting twenty-five per decade from the 1960s to the 1990s. We compared these with measurements of red-blood-cell δ15N values and serum 25(OH)D3 concentrations from 20-29-year-old women from the same region collected during the 2000s and 2010s in a Center for Alaska Native Health Research study. SETTING: The Yukon Kuskokwim Delta region of south-west Alaska. SUBJECTS: Alaska Native women (n 319) aged 20-29 years at the time of specimen collection. RESULTS: Intake of traditional marine foods, as measured by serum δ15N values, decreased significantly each decade from the 1960s through the 1990s, then remained constant from the 1990s through the present (F 5,306=77·4, P<0·0001). Serum vitamin D concentrations also decreased from the 1960s to the present (F 4,162=26·1, P<0·0001). CONCLUSIONS: Consumption of traditional marine foods by young Alaska Native women dropped significantly between the 1960s and the 1990s and was associated with a significant decline in serum vitamin D concentrations. Studies are needed to evaluate the promotion of traditional marine foods and routine vitamin D supplementation during pregnancy for this population.


Assuntos
/estatística & dados numéricos , Dieta/métodos , Dieta/estatística & dados numéricos , Alimentos Marinhos/estatística & dados numéricos , Vitamina D/sangue , Adulto , Alaska , Estudos Transversais , Feminino , Humanos , Masculino , Adulto Jovem
16.
Kidney Int ; 90(3): 627-37, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27521113

RESUMO

The kidney proximal tubule is the primary site in the nephron for excretion of waste products through a combination of active uptake and secretory processes and is also a primary target of drug-induced nephrotoxicity. Here, we describe the development and functional characterization of a 3-dimensional flow-directed human kidney proximal tubule microphysiological system. The system replicates the polarity of the proximal tubule, expresses appropriate marker proteins, exhibits biochemical and synthetic activities, as well as secretory and reabsorptive processes associated with proximal tubule function in vivo. This microphysiological system can serve as an ideal platform for ex vivo modeling of renal drug clearance and drug-induced nephrotoxicity. Additionally, this novel system can be used for preclinical screening of new chemical compounds prior to initiating human clinical trials.


Assuntos
Túbulos Renais Proximais/fisiologia , Modelos Biológicos , Eliminação Renal/fisiologia , Transporte Biológico Ativo , Técnicas de Cultura de Células , Sobrevivência Celular , Células Epiteliais/metabolismo , Humanos , Túbulos Renais Proximais/citologia
17.
J Nutr ; 146(2): 318-25, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26661839

RESUMO

BACKGROUND: Low blood vitamin D concentration is a concern for people living in circumpolar regions, where sunlight is insufficient for vitamin D synthesis in winter months and the consumption of traditional dietary sources of vitamin D is decreasing. OBJECTIVE: The objective was to characterize the effects of diet, genetic variation, and season on serum 25-hydroxycholecalciferol [25(OH)D3] concentrations in Yup'ik Alaska Native people living in rural southwest Alaska. METHODS: This study was a cross-sectional design that assessed the associations of traditional diet (via a biomarker, the RBC δ(15)N value), age, gender, body mass index (BMI), community location, and genotype of select single nucleotide polymorphisms (SNPs) in cytochrome P450 family 2, subfamily R, peptide 1 (CYP2R1), 7-dehydrocholesterol reductase (DHCR7), and vitamin D binding protein (GC) with serum 25(OH)D3 concentrations in 743 Yup'ik male and female participants, aged 14-93 y, recruited between September 2009 and December 2013. RESULTS: Yup'ik participants, on average, had adequate concentrations of serum 25(OH)D3 (31.1 ± 1.0 ng/mL). Variations in diet, BMI, age, gender, season of sample collection, and inland or coastal community geography were all significantly associated with serum 25(OH)D3 concentration. In models not adjusting for other covariates, age, diet, and seasonal effects explained 33.7%, 20.7%, and 9.8%, respectively, of variability in serum 25(OH)D3 concentrations. Of the 8 SNPs interrogated in CYP2R1 and DHCR7, only rs11023374 in CYP2R1 was significantly associated with serum 25(OH)D3, explaining 1.5% of variability. The GC haplotype explained an additional 2.8% of variability. Together, age, diet, gender, season of sample collection, BMI, geography of the community, and genotype at rs11023374 explained 52.5% of the variability in serum 25(OH)D3 concentrations. CONCLUSIONS: Lower consumption of the traditional diet was associated with lower serum concentrations of 25(OH)D3. Younger adults and youth in this community may be at increased risk of adverse outcomes associated with vitamin D insufficiency compared with older members of the community, especially during seasons of low sunlight exposure, because of lower consumption of dietary sources of vitamin D.


Assuntos
Calcifediol/sangue , Dieta , Indígenas Norte-Americanos , Polimorfismo de Nucleotídeo Único , Estações do Ano , Deficiência de Vitamina D/etiologia , Adolescente , Adulto , Alaska/epidemiologia , Colestanotriol 26-Mono-Oxigenase/genética , Estudos Transversais , Família 2 do Citocromo P450 , Eritrócitos , Comportamento Alimentar , Feminino , Humanos , Indígenas Norte-Americanos/genética , Masculino , Pessoa de Meia-Idade , Prevalência , Fatores de Risco , População Rural , Luz Solar , Deficiência de Vitamina D/sangue , Deficiência de Vitamina D/epidemiologia , Deficiência de Vitamina D/genética , Proteína de Ligação a Vitamina D/genética , Adulto Jovem
18.
Drug Metab Dispos ; 44(3): 329-35, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26700954

RESUMO

To further the development of a model for simultaneously assessing intestinal absorption and first-pass metabolism in vitro, Caco-2, LS180, T84, and fetal human small intestinal epithelial cells (fSIECs) were cultured on permeable inserts, and the integrity of cell monolayers, CYP3A4 activity, and the inducibility of enzymes and transporters involved in intestinal drug disposition were measured. Caco-2, T84, and fSIECs all formed tight junctions, as assessed by immunofluorescence microscopy for zonula occludens-1, which was well organized into circumscribing strands in T84, Caco-2, and fSIECs but was diffuse in LS180 cells. The transepithelial electrical resistance value for LS180 monolayers was lower than that for Caco-2, T84, and fSIECs. In addition, the apical-to-basolateral permeability of the paracellular marker Lucifer yellow across LS180 monolayers was greater than in fSIECs, T84, and Caco-2 monolayers. The transcellular marker propranolol exhibited similar permeability across all cells. With regard to metabolic capacity, T84 and LS180 cells showed comparable basal midazolam hydroxylation activity and was inducible by rifampin and 1α,25(OH)2D3 in LS180 cells, but only marginally so in T84 cells. The basal CYP3A4 activity of fSIECs and Caco-2 cells was much lower and not inducible. Interestingly, some of the drug transporters expressed in LS180 and Caco-2 cells were induced by either 1α,25(OH)2D3 or rifampin or both, but effects were limited in the other two cell lines. These results suggest that none of the cell lines tested fully replicated the drug disposition properties of the small intestine and that the search for an ideal screening tool must continue.


Assuntos
Carcinoma/metabolismo , Neoplasias do Colo/metabolismo , Células Epiteliais/metabolismo , Intestino Delgado/metabolismo , Preparações Farmacêuticas/metabolismo , Transporte Biológico/fisiologia , Células CACO-2 , Calcitriol/metabolismo , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/fisiologia , Citocromo P-450 CYP3A/metabolismo , Humanos , Absorção Intestinal/fisiologia , Rifampina/metabolismo
19.
Am J Kidney Dis ; 64(2): 187-97, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24703961

RESUMO

BACKGROUND: Decreased glomerular filtration rate (GFR) leads to reduced production of 1,25-dihydroxyvitamin D3 from 25-hydroxyvitamin D3 (25[OH]D3). Effects of low GFR on vitamin D catabolism are less well understood. We tested associations of estimated GFR (eGFR) with the circulating concentration of 24,25-dihydroxyvitamin D3 (24,25[OH]2D3), the most abundant product of 25(OH)D3 catabolism, across populations with a wide range of GFRs. STUDY DESIGN: Cross-sectional study. SETTING & PARTICIPANTS: 9,596 participants in 5 cohort studies and clinical trials: the Diabetes Control and Complications Trial (N=1,193), Multi-Ethnic Study of Atherosclerosis (N=6,470), Cardiovascular Health Study (N=932), Seattle Kidney Study (N=289), and Hemodialysis Study (N=712). PREDICTOR: eGFR. OUTCOME: Circulating 24,25(OH)2D3 concentration. MEASUREMENTS: GFR was estimated from serum creatinine using the Chronic Kidney Disease Epidemiology Collaboration equation. Vitamin D metabolites were measured by mass spectrometry. RESULTS: Circulating 24,25(OH)2D3 concentration was correlated with circulating 25(OH)D3 concentration (Pearson r range, 0.64-0.88). This correlation was weaker with lower eGFRs. Moreover, the increment in 24,25(OH)2D3 concentration associated with higher 25(OH)D3 concentration (slope) was lower with lower eGFRs: 2.06 (95% CI, 2.01-2.10), 1.77 (95% CI, 1.74-1.81), 1.55 (95% CI, 1.48-1.62), 1.17 (95% CI, 1.05-1.29), 0.92 (95% CI, 0.74-1.10), 0.61 (95% CI, 0.22-1.00), and 0.37 (95% CI, 0.35-0.39) ng/mL of 24,25(OH)2D3 per 10 ng/mL of 25(OH)D3 for eGFRs≥90, 60-89, 45-59, 30-44, 15-29, and <15 mL/min/1.73 m2 and end-stage renal disease treated with hemodialysis, respectively. As a result, at a 25(OH)D3 concentration of 20 ng/mL, mean 24,25(OH)2D3 concentrations were 2.92 (95% CI, 2.87-2.96), 2.68 (95% CI, 2.64-2.72), 2.35 (95% CI, 2.26-2.45), 1.92 (95% CI, 1.74-2.10), 1.69 (95% CI, 1.43-1.95), 1.14 (95% CI, 0.62-1.66), and 1.04 (95% CI,1.02-1.07) ng/mL for each category, respectively. This interaction was independent of other relevant clinical characteristics. Race, diabetes, urine albumin excretion, and circulating parathyroid hormone and fibroblast growth factor 23 concentrations more modestly modified the association of 24,25(OH)2D3 with 25(OH)D3. LIMITATIONS: Lack of direct pharmacokinetic measurements of vitamin D catabolism. CONCLUSIONS: Lower eGFR is associated strongly with reduced vitamin D catabolism, as measured by circulating 24,25(OH)2D3 concentration.


Assuntos
24,25-Di-Hidroxivitamina D 3/sangue , Diabetes Mellitus/sangue , Diabetes Mellitus/fisiopatologia , Taxa de Filtração Glomerular/fisiologia , Falência Renal Crônica/sangue , Falência Renal Crônica/fisiopatologia , Estudos Observacionais como Assunto/métodos , Ensaios Clínicos Controlados Aleatórios como Assunto/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Estudos de Coortes , Estudos Transversais , Diabetes Mellitus/diagnóstico , Feminino , Humanos , Falência Renal Crônica/diagnóstico , Masculino , Pessoa de Meia-Idade , Adulto Jovem
20.
Endocrinology ; 155(6): 2052-63, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24641623

RESUMO

25-Hydroxyvitamin D3 (25OHD3) is used as a clinical biomarker for assessment of vitamin D status. Blood levels of 25OHD3 represent a balance between its formation rate and clearance by several oxidative and conjugative processes. In the present study, the identity of human uridine 5'-diphosphoglucuronyltransferases (UGTs) capable of catalyzing the 25OHD3 glucuronidation reaction was investigated. Two isozymes, UGT1A4 and UGT1A3, were identified as the principal catalysts of 25OHD3 glucuronidation in human liver. Three 25OHD3 monoglucuronides (25OHD3-25-glucuronide, 25OHD3-3-glucuronide, and 5,6-trans-25OHD3-25-glucuronide) were generated by recombinant UGT1A4/UGT1A3, human liver microsomes, and human hepatocytes. The kinetics of 25OHD3 glucuronide formation in all systems tested conformed to the Michaelis-Menten model. An association between the UGT1A4*3 (Leu48Val) gene polymorphism with the rates of glucuronide formation was also investigated using human liver microsomes isolated from 80 genotyped livers. A variant allele dose effect was observed: the homozygous UGT1A4*3 livers (GG) had the highest glucuronidation activity, whereas the wild type (TT) had the lowest activity. Induction of UGT1A4 and UGT1A3 gene expression was also determined in human hepatocytes treated with pregnane X receptor/constitutive androstane receptor agonists, such as rifampin, carbamazepine, and phenobarbital. Although UGT mRNA levels were increased significantly by all of the known pregnane X receptor/constitutive androstane receptor agonists tested, rifampin, the most potent of the inducers, significantly induced total 25OHD3 glucuronide formation activity in human hepatocytes measured after 2, but not 4 and 24 hours, of incubation. Finally, the presence of 25OHD3-3-glucuronide in both human plasma and bile was confirmed, suggesting that the glucuronidation pathway might be physiologically relevant and contribute to vitamin D homeostasis in humans.


Assuntos
Calcifediol/metabolismo , Glucuronosiltransferase/metabolismo , Humanos , Técnicas In Vitro , Cinética , Microssomos Hepáticos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA