Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cancer Res ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39018356

RESUMO

Frequent (>70%) TP53 mutations often promote its protein stabilization, driving esophageal adenocarcinoma (EAC) development linked to poor survival and therapy resistance. We previously reported that during Barrett's (BE) progression to EAC, an isoform switch occurs in the E3 ubiquitin ligase RNF128 (aka GRAIL - gene related to anergy in lymphocytes), enriching isoform 1 (hereby GRAIL1) and, stabilizing the mutant p53 protein. Consequently, GRAIL1 knockdown degrades mutant p53. But how GRAIL1 stabilizes the mutant p53 protein remains unclear. In search for a mechanism, here we performed biochemical and cell biology studies to identify that GRAIL has a binding domain (315-PMCKCDILKA-325) for Hsp40/DNAJ. This interaction can influence DNAJ chaperone activity to modulate misfolded mutant p53 stability. As predicted, either the overexpression of a GRAIL fragment (Frag-J) encompassing the DNAJ binding domain, or a cell permeable peptide (Pep-J) encoding the above 10 amino acids, can bind and inhibit DNAJ-Hsp70 co-chaperone activity thus degrading misfolded mutant p53. Consequently, either Frag-J or Pep-J can reduce the survival of mutant p53 containing dysplastic BE and EAC cells and inhibit growth of patient-derived dysplastic BE organoids (PDOs) in 3D cultures. The misfolded mutant p53 targeting and growth inhibitory effects of Pep-J is comparable to simvastatin, a cholesterol lowering drug, that can degrade misfolded mutant p53 also via inhibiting DNAJA1, although by a distinct mechanism. Implications: We identified a novel ubiquitin ligase independent, chaperone regulating domain in GRAIL and further synthesized a first-in-class novel misfolded mutant p53 degrading peptide having future translational potential.

2.
JCI Insight ; 9(13)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38781019

RESUMO

Immunosuppression is a common feature of esophageal adenocarcinoma (EAC) and has been linked to poor overall survival (OS). We hypothesized that upstream factors might negatively influence CD3 levels and T cell activity, thus promoting immunosuppression and worse survival. We used clinical data and patient samples of those who progressed from Barrett's to dysplasia to EAC, investigated gene (RNA-Seq) and protein (tissue microarray) expression, and performed cell biology studies to delineate a pathway impacting CD3 protein stability that might influence EAC outcome. We showed that the loss of both CD3-ε expression and CD3+ T cell number correlated with worse OS in EAC. The gene related to anergy in lymphocytes isoform 1 (GRAIL1), which is the prominent isoform in EACs, degraded (ε, γ, δ) CD3s and inactivated T cells. In contrast, isoform 2 (GRAIL2), which is reduced in EACs, stabilized CD3s. Further, GRAIL1-mediated CD3 degradation was facilitated by interferon-stimulated gene 15 (ISG15), a ubiquitin-like protein. Consequently, the overexpression of a ligase-dead GRAIL1, ISG15 knockdown, or the overexpression of a conjugation-defective ISG15-leucine-arginine-glycine-glycine mutant could increase CD3 levels. Together, we identified an ISG15/GRAIL1/mutant p53 amplification loop negatively influencing CD3 levels and T cell activity, thus promoting immunosuppression in EAC.


Assuntos
Adenocarcinoma , Complexo CD3 , Citocinas , Neoplasias Esofágicas , Ubiquitinas , Humanos , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/mortalidade , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/imunologia , Adenocarcinoma/genética , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Adenocarcinoma/metabolismo , Adenocarcinoma/imunologia , Complexo CD3/metabolismo , Complexo CD3/genética , Citocinas/metabolismo , Ubiquitinas/metabolismo , Ubiquitinas/genética , Masculino , Linfócitos T/metabolismo , Linfócitos T/imunologia , Feminino , Regulação Neoplásica da Expressão Gênica , Esôfago de Barrett/patologia , Esôfago de Barrett/genética , Esôfago de Barrett/metabolismo , Pessoa de Meia-Idade
3.
JCI Insight ; 9(6)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376927

RESUMO

Radiotherapy induces a type I interferon-mediated (T1IFN-mediated) antitumoral immune response that we hypothesized could be potentiated by a first-in-class ataxia telangiectasia mutated (ATM) inhibitor, leading to enhanced innate immune signaling, T1IFN expression, and sensitization to immunotherapy in pancreatic cancer. We evaluated the effects of AZD1390 or a structurally related compound, AZD0156, on innate immune signaling and found that both inhibitors enhanced radiation-induced T1IFN expression via the POLIII/RIG-I/MAVS pathway. In immunocompetent syngeneic mouse models of pancreatic cancer, ATM inhibitor enhanced radiation-induced antitumoral immune responses and sensitized tumors to anti-PD-L1, producing immunogenic memory and durable tumor control. Therapeutic responses were associated with increased intratumoral CD8+ T cell frequency and effector function. Tumor control was dependent on CD8+ T cells, as therapeutic efficacy was blunted in CD8+ T cell-depleted mice. Adaptive immune responses to combination therapy provided systemic control of contralateral tumors outside of the radiation field. Taken together, we show that a clinical candidate ATM inhibitor enhances radiation-induced T1IFN, leading to both innate and subsequent adaptive antitumoral immune responses and sensitization of otherwise resistant pancreatic cancer to immunotherapy.


Assuntos
Ataxia Telangiectasia , Interferon Tipo I , Neoplasias Pancreáticas , Piridinas , Quinolonas , Animais , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/radioterapia , Neoplasias Pancreáticas/patologia , Imunidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA