Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Aquat Toxicol ; 272: 106979, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823072

RESUMO

Tris(2-chloroethyl) phosphate (TCEP) and tris(1­chloro-2-propyl) phosphate (TCPP) are widely used as chlorinated organophosphate flame retardants (OPFRs) due to their fire-resistance capabilities. However, their extensive use has led to their permeation and pollution in aquatic environments. Using amphibians, which are non-model organisms, to test the toxic effects of OPFRs is relatively uncommon. This study examined the acute and chronic toxicity differences between TCEP and TCPP on Polypedates megacephalus tadpoles and evaluated the potential ecological risks to tadpoles in different aquatic environments using the risk quotient (RQ). In acute toxicity assay, the tadpole survival rates decreased with increased exposure time and concentrations, with TCEP exhibiting higher LC50 values than TCPP, at 305.5 mg/L and 70 mg/L, respectively. In the chronic assay, prolonged exposure to 300 µg/L of both substances resulted in similar adverse effects on tadpole growth, metamorphosis, and hepatic antioxidant function. Based on RQ values, most aquatic environments did not pose an ecological risk to tadpoles. However, the analysis showed that wastewater presented higher risks than rivers and drinking water, and TCPP posed a higher potential risk than TCEP in all examined aquatic environments. These findings provide empirical evidence to comprehend the toxicological effects of OPFRs on aquatic organisms and to assess the safety of aquatic environments.


Assuntos
Anuros , Retardadores de Chama , Larva , Organofosfatos , Compostos Organofosforados , Poluentes Químicos da Água , Animais , Retardadores de Chama/toxicidade , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Poluentes Químicos da Água/toxicidade , Compostos Organofosforados/toxicidade , Medição de Risco , Organofosfatos/toxicidade , Anuros/crescimento & desenvolvimento , Metamorfose Biológica/efeitos dos fármacos , Testes de Toxicidade Aguda , Dose Letal Mediana
2.
Se Pu ; 42(6): 581-589, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-38845519

RESUMO

Oils and fats are commonly used in the pharmaceutical industry as solvents, emulsifiers, wetting agents, and dispersants, and are an important category of pharmaceutical excipients. Fatty acids with unique compositions are important components of oil pharmaceutical excipients. The Chinese Pharmacopoeia provides clear descriptions of the fatty acid types and limits suitable for individual oil pharmaceutical excipient. An unqualified fatty acid composition or content may indicate adulteration or deterioration. The fatty acid composition, as a key indicator for the identification and adulteration evaluation of oil pharmaceutical excipients, can directly affect the quality and safety of oil pharmaceutical excipients and preparations. Gas chromatography is the most widely used technique for fatty acid analysis, but it generally requires derivatization, which affects quantitative accuracy. Supercritical fluid chromatography (SFC), an environmentally friendly technique with excellent separation capability, offers an efficient method for detecting fatty acids without derivatization. Unlike other chromatographic methods, SFC does not use nonvolatile solvents (e. g., water) as the mobile phase, rendering it compatible with an evaporative light-scattering detector (ELSD) for enhanced detection sensitivity. However, the fatty acids in oil pharmaceutical excipients exist in the free and bound forms, and the low content of free fatty acids in these oil pharmaceutical excipients not only poses challenges for their detection but also complicates the determination of characteristic fatty acid compositions and contents. Moreover, the compositions and ratios of fatty acids are influenced by environmental factors, leading to interconversion between their two forms. In this context, saponification provides a simpler and faster alternative to derivatization. Saponification degrades oils and fats by utilizing the reaction between esters and an alkaline solution, ultimately releasing the corresponding fatty acids. Because this method is more cost effective than derivatization, it is a suitable pretreatment method for the detection of fatty acids in oil pharmaceutical excipients using the SFC-ELSD approach. In this study, we employed SFC-ELSD to simultaneously determine six fatty acids, namely, myristic acid, palmitic acid, stearic acid, arachidic acid, docosanoic acid, and lignoceric acid, in oil pharmaceutical excipients. Saponification of the oil pharmaceutical excipients using sodium hydroxide methanol solution effectively avoided the bias in the determination of fatty acid species and contents caused by the interconversion of fatty acids and esters. The separation of the six fatty acids was achieved within 12 min, with good linearity within their respective mass concentration ranges. The limits of detection and quantification were 5-10 mg/L and 10-25 mg/L, respectively, and the spiked recoveries were 80.93%-111.66%. The method proved to be sensitive, reproducible, and stable, adequately meeting requirements for the analysis of fatty acids in oil pharmaceutical excipients. Finally, the analytical method was successfully applied to the determination of six fatty acids in five types of oil pharmaceutical excipients, namely, corn oil, soybean oil, coconut oil, olive oil, and peanut oil. It can be combined with principal component analysis to accurately differentiate different types of oil pharmaceutical excipients, providing technical support for the rapid identification and quality control of oil pharmaceutical excipients. Thus, the proposed method may potentially be applied to the analysis of complex systems adulterated with oil pharmaceutical excipients.


Assuntos
Cromatografia com Fluido Supercrítico , Excipientes , Ácidos Graxos , Ácidos Graxos/análise , Ácidos Graxos/química , Cromatografia com Fluido Supercrítico/métodos , Excipientes/análise , Excipientes/química , Espalhamento de Radiação , Luz , Óleos/química , Óleos/análise
3.
Front Pharmacol ; 15: 1380277, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628645

RESUMO

Essential oils are potential alternatives to antibiotics for preventing Candida albicans (C. albicans) infection which is responsible for economic losses in the pigeon industry. Cymbopogon martini essential oil (EO) can inhibit pathogens, particularly fungal pathogens but its potential beneficial effects on C. albicans-infected pigeons remain unclear. Therefore, we investigated the impact of C. martini EO on antioxidant activity, immune response, intestinal barrier function, and intestinal microbiota in C. albicans-infected pigeons. The pigeons were divided into four groups as follows: (1) NC group: C. albicans uninfected/C. martini EO untreated group; (2) PC group: C. albicans infected/C. martini EO untreated group; (3) LPA group: C. albicans infected/1% C. martini EO treated group; and (4) HPA group: C. albicans infected/2% C. martini EO treated group. The pigeons were infected with C. albicans from day of age 35 to 41 and treated with C. martini EO from day of age 42 to 44, with samples collected on day of age 45 for analysis. The results demonstrated that C. martini EO prevented the reduction in the antioxidant enzymes SOD and GSH-Px causes by C. albicans challenge in pigeons. Furthermore, C. martini EO could decrease the relative expression of IL-1ß, TGF-ß, and IL-8 in the ileum, as well as IL-1ß and IL-8 in the crop, while increasing the relative expression of Claudin-1 in the ileum and the crop and Occludin in the ileum in infected pigeons. Although the gut microbiota composition was not significantly affected by C. martini EO, 2% C. martini EO increased the abundance of Alistipes and Pedobacter. In conclusion, the application of 2% C. martini EO not only enhanced the level of antioxidant activity and the expression of genes related to intestinal barrier function but also inhibited inflammatory genes in C. albicans-infected pigeons and increased the abundance of gut bacteria that are resistant to C. albicans.

4.
Biochem Pharmacol ; 223: 116141, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38499108

RESUMO

Small Ras homologous guanosine triphosphatase (Rho GTPase) family proteins are highly associated with tumorigenesis and development. As intrinsic exchange activity regulators of Rho GTPases, Rho guanine nucleotide exchange factors (RhoGEFs) have been demonstrated to be closely involved in tumor development and received increasing attention. They mainly contain two families: the diffuse B-cell lymphoma (Dbl) family and the dedicator of cytokinesis (Dock) family. More and more emphasis has been paid to the Dbl family members for their abnormally high expression in various cancers and their correlation to poor prognosis. In this review, the common and distinctive structures of Dbl family members are discussed, and their roles in cancer are summarized with a focus on Ect2, Tiam1/2, P-Rex1/2, Vav1/2/3, Trio, KALRN, and LARG. Significantly, the strategies targeting Dbl family RhoGEFs are highlighted as novel therapeutic opportunities for cancer.


Assuntos
Linfoma de Células B , Neoplasias , Humanos , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Carcinogênese
5.
Acta Pharmacol Sin ; 45(5): 1019-1031, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38228909

RESUMO

Podocyte lipotoxicity mediated by impaired cellular cholesterol efflux plays a crucial role in the development of diabetic kidney disease (DKD), and the identification of potential therapeutic targets that regulate podocyte cholesterol homeostasis has clinical significance. Coiled-coil domain containing 92 (CCDC92) is a novel molecule related to metabolic disorders and insulin resistance. However, whether the expression level of CCDC92 is changed in kidney parenchymal cells and the role of CCDC92 in podocytes remain unclear. In this study, we found that Ccdc92 was significantly induced in glomeruli from type 2 diabetic mice, especially in podocytes. Importantly, upregulation of Ccdc92 in glomeruli was positively correlated with an increased urine albumin-to-creatinine ratio (UACR) and podocyte loss. Functionally, podocyte-specific deletion of Ccdc92 attenuated proteinuria, glomerular expansion and podocyte injury in mice with DKD. We further demonstrated that Ccdc92 contributed to lipid accumulation by inhibiting cholesterol efflux, finally promoting podocyte injury. Mechanistically, Ccdc92 promoted the degradation of ABCA1 by regulating PA28α-mediated proteasome activity and then reduced cholesterol efflux. Thus, our studies indicate that Ccdc92 contributes to podocyte injury by regulating the PA28α/ABCA1/cholesterol efflux axis in DKD.


Assuntos
Transportador 1 de Cassete de Ligação de ATP , Colesterol , Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Camundongos Endogâmicos C57BL , Podócitos , Animais , Podócitos/metabolismo , Podócitos/patologia , Colesterol/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Camundongos , Masculino , Diabetes Mellitus Experimental/metabolismo , Camundongos Knockout , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo
6.
Heliyon ; 9(12): e22937, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38094057

RESUMO

The aim of this study is to improve the utilization of phosphorus (P) in soil, and to study the effects of phosphate-solubilizing bacteria (PSB) on P fractions and bacterial communities. In this experiment, we reduced the amount of P fertilizer by 30 % and 40 % respectively to studied the effects of combined application of bacterial fertilizers on soil microbial community and phosphate transformation process under different fertilization rates. The results showed that the application of PSB affected the transformation process of different P fractions. PSB had the most significant impact on organic phosphorus (p < 0.05). Correlation analysis showed that the abundance of bacteria was significantly correlated to the P fractions, indicating that the application of PSB had affected the bacterial community structure. In addition, Structural Equation Model (SEM) analysis showed that there was a causal relationship between the various visual variables. SEM confirmed the response relationship between bacterial communities and P components. Based on these results, we concluded that the application of PSB increased the sensitivity of P components, especially Olsen-P and MBP, to soil microorganisms. The application of PSB is an effective method to improve P utilization.

7.
Oncogene ; 42(47): 3491-3502, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37828220

RESUMO

Cell senescence deters the activation of various oncogenes. Induction of senescence is, therefore, a potentially effective strategy to interfere with vital processes in tumor cells. Sphingosine-1-phosphate receptor 1 (S1PR1) has been implicated in various cancer types, including ovarian cancer. The mechanism by which S1PR1 regulates ovarian cancer cell senescence is currently elusive. In this study, we demonstrate that S1PR1 was highly expressed in human ovarian cancer tissues and cell lines. S1PR1 deletion inhibited the proliferation and migration of ovarian cancer cells. S1PR1 deletion promoted ovarian cancer cell senescence and sensitized ovarian cancer cells to cisplatin chemotherapy. Exposure of ovarian cancer cells to sphingosine-1-phosphate (S1P) increased the expression of 3-phosphatidylinositol-dependent protein kinase 1 (PDK1), decreased the expression of large tumor suppressor 1/2 (LATS1/2), and induced phosphorylation of Yes-associated protein (p-YAP). Opposite results were obtained in S1PR1 knockout cells following pharmacological inhibition. After silencing LATS1/2 in S1PR1-deficient ovarian cancer cells, senescence was suppressed and S1PR1 expression was increased concomitantly with YAP expression. Transcriptional regulation of S1PR1 by YAP was confirmed by chromatin immunoprecipitation. Accordingly, the S1PR1-PDK1-LATS1/2-YAP pathway regulates ovarian cancer cell senescence and does so through a YAP-mediated feedback loop. S1PR1 constitutes a druggable target for the induction of senescence in ovarian cancer cells. Pharmacological intervention in the S1PR1-PDK1-LATS1/2-YAP signaling axis may augment the efficacy of standard chemotherapy.


Assuntos
Neoplasias Ovarianas , Proteínas Quinases , Feminino , Humanos , Receptores de Esfingosina-1-Fosfato/genética , Neoplasias Ovarianas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Senescência Celular/genética , Proliferação de Células/genética
8.
Immunol Lett ; 263: 70-77, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37797724

RESUMO

Recently, the incidence of autoimmune hepatitis (AIH) has gradually increased, and the disease can eventually develop into cirrhosis or even hepatoma if left untreated. AIH patients are often characterized by gut microbiota dysbiosis, but whether gut microbiota dysbiosis contributes to the progression of AIH remains unclear. In this study, we investigate the role of gut microbiota dysbiosis in the occurrence and development of AIH in mice with dextran sulfate sodium salt (DSS) induced colitis. C57BL/6J mice were randomly divided into normal group, S100-induced AIH group, and DSS+S100 group (1 % DSS in the drinking water), and the experimental cycle lasted for four weeks. We demonstrate that DSS administration aggravates hepatic inflammation and disruption of the intestinal barrier, and significantly changes the composition of gut microbiota in S100-induced AIH mice, which are mainly characterized by increased abundance of pathogenic bacteria and decreased abundance of beneficial bacteria. These results suggest that DSS administration aggravates liver injury of S100-induced AIH, which may be due to DSS induced gut microbiota dysbiosis, leading to disruption of the intestinal barrier, and then, the microbiota translocate to the liver, aggravating hepatic inflammation.


Assuntos
Colite , Microbioma Gastrointestinal , Hepatite Autoimune , Humanos , Camundongos , Animais , Sulfato de Dextrana/efeitos adversos , Hepatite Autoimune/etiologia , Hepatite Autoimune/patologia , Disbiose/microbiologia , Camundongos Endogâmicos C57BL , Inflamação/patologia , Modelos Animais de Doenças , Colo/patologia
9.
Org Biomol Chem ; 21(30): 6068-6082, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37427565

RESUMO

(4 + 2) Cycloaddition plays an important role in the synthesis of versatile carbocyclic/heterocyclic compounds with its high atom- and step-economy. Additionally, with mild conditions and indispensable functional group compatibility, the radical reaction has been recognized as a useful tool in organic chemistry. Given the enormous impact of radical-mediated (4 + 2) cycloaddition processes and their promising applications, we summarize and highlight the recent works in this attractive area. On the basis of the types of radicals that initiate different (4 + 2) cycloaddition processes, we classify them into processes involving alkenyl cations or alkenyl radicals, aryl radicals, acyl radicals, alkyl radicals, and heteroatom radicals, and this review places special emphasis on the reaction design and mechanisms, which will stimulate future developments in radical-mediated intermolecular (4 + 2) cycloaddition.

10.
Foods ; 12(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37444374

RESUMO

It is well established that p-Hydroxycinnamic acids (HCAs), including ferulic, caffeic, sinapic, and p-coumaric acids, possess a characteristic phenylpropanoid C6-C3 backbone and account for about one-third of the phenolic compounds in our diet. HCAs are typically associated with various plant cell wall components, including mono-, di-, and polysaccharides, sterols, polyamines, glycoproteins, and lignins. Interestingly, enzymes produced by intestinal microbes liberate HCAs from these associations. HCAs are completely absorbed in their free form upon ingestion and undergo specific reactions upon absorption in the small intestine or liver. The gut epithelium, composed of intestinal epithelial cells (IECs), acts as a physical barrier against harmful bacteria and a site for regulated interactions between bacteria and the gut lumen. Thus, maintaining the integrity of the epithelial barrier is essential for establishing a physiochemical environment conducive to homeostasis. This review summarizes the protective effects of HCAs on the intestinal barrier, achieved through four mechanisms: preserving tight junction proteins (TJPs), modulating pro-inflammatory cytokines, exerting antioxidant activity, and regulating the intestinal microbiota.

11.
Chem Asian J ; 18(18): e202300606, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37500593

RESUMO

The synergistic systems of photoredox and copper catalyst have already appeared as a novel formation of green synthetic chemistry, which open new avenues for chemical synthesis applications. We describe a novel strategy for the cyclization of alkyne-tethered α-bromocarbonyls initiated by the cleavage of C(sp3 )-Br bond via the collaboration of photoredox and copper catalyst. The present protocol exhibits mildness using economical copper catalyst and visible-light at room temperature. The gram-scale and sunlight irradiation experiments proceeded smoothly to show the practicality of the methodology. It is notable that the newly generated oxygen in the product originates from H2 O.

12.
World J Clin Cases ; 11(15): 3571-3577, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37383908

RESUMO

BACKGROUND: Malignant melanoma (MM) has shown an increasing incidence worldwide, and a potential to metastasize to almost any part of the body. Clinically, MM with bone metastasis as the initial manifestation is extremely rare. Spinal metastatic MM can cause spinal cord or nerve root compression, resulting in severe pain and paralysis. Currently, the primary clinical treatments for MM are surgical resection in conjunction with chemotherapy, radiotherapy, and immunotherapy. CASE SUMMARY: Here, we report the case of a 52-year-old male who presented to the clinic with progressive low back pain and limited nerve function. No primary lesion or spinal cord compression was detected from computed tomography and magnetic resonance imaging of the lumbar vertebrae and positron emission tomography scan. A lumbar puncture biopsy confirmed the diagnosis of lumbar spine metastatic MM. Following surgical resection, the patient's quality of life improved, symptoms were relieved, and comprehensive treatment was initiated, which prevented recurrence. CONCLUSION: Spinal metastatic MM is clinically rare, and may cause neurological symptoms, including paraplegia. Currently, the clinical treatment plan consists of surgical resection in combination with chemotherapy, radiotherapy, and immunotherapy.

14.
Acta Pharmacol Sin ; 44(10): 2048-2064, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37225848

RESUMO

Autoimmune hepatitis (AIH) is a progressive hepatitis syndrome characterized by high transaminase levels, interface hepatitis, hypergammaglobulinemia, and the presence of autoantibodies. Misdiagnosis or delayed treatment of AIH can lead to cirrhosis or liver failure, which poses a major risk to human health. ß-Arrestin2, a key scaffold protein for intracellular signaling pathways, has been found to be involved in many autoimmune diseases such as Sjogren's syndrome and rheumatoid arthritis. However, whether ß-arrestin2 plays a role in AIH remains unknown. In the present study, S-100-induced AIH was established in both wild-type mice and ß-arrestin2 knockout (Arrb2 KO) mice, and the experiments identified that liver ß-arrestin2 expression was gradually increased, and positively correlated to serum ANA, ALT and AST levels during AIH progression. Furthermore, ß-arrestin2 deficiency ameliorated hepatic pathological damage, decreased serum autoantibody and inflammatory cytokine levels. ß-arrestin2 deficiency also inhibited hepatocyte apoptosis and prevented the infiltration of monocyte-derived macrophages into the damaged liver. In vitro experiments revealed that ß-arrestin2 knockdown suppressed the migration and differentiation of THP-1 cells, whereas ß-arrestin2 overexpression promoted the migration of THP-1 cells, which was regulated by the activation of the ERK and p38 MAPK pathways. In addition, ß-arrestin2 deficiency attenuated TNF-α-induced primary hepatocyte apoptosis by activating the Akt/GSK-3ß pathway. These results suggest that ß-arrestin2 deficiency ameliorates AIH by inhibiting the migration and differentiation of monocytes, decreasing the infiltration of monocyte-derived macrophages into the liver, thereby reducing inflammatory cytokines-induced hepatocytes apoptosis. Therefore, ß-arrestin2 may act as an effective therapeutic target for AIH.


Assuntos
Hepatite Autoimune , Hepatopatias , beta-Arrestina 2 , Animais , Camundongos , Apoptose , Autoanticorpos/metabolismo , beta-Arrestina 2/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Hepatite Autoimune/diagnóstico , Hepatite Autoimune/tratamento farmacológico , Hepatócitos/metabolismo , Fígado/metabolismo , Hepatopatias/metabolismo , Macrófagos/metabolismo , Proteínas S100/metabolismo
15.
Acta Pharmacol Sin ; 44(6): 1206-1216, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36635422

RESUMO

Hypertensive nephropathy (HTN) ranks as the second-leading cause of end-stage renal disease (ESRD). Accumulating evidence suggests that persistent hypertension injures tubular cells, leading to tubulointerstitial fibrosis (TIF), which is involved in the pathogenesis of HTN. G protein-coupled receptors (GPCRs) are implicated in many important pathological and physiological processes and act as important drug targets. In this study, we explored the intrarenal mechanisms underlying hypertension-associated TIF, and particularly, the potential role of GPR97, a member of the adhesion GPCR subfamily, in TIF. A deoxycorticosterone acetate (DOCA)/salt-induced hypertensive mouse model was used. We revealed a significantly upregulated expression of GPR97 in the kidneys, especially in renal tubules, of the hypertensive mice and 10 patients with biopsy-proven hypertensive kidney injury. GPR97-/- mice showed markedly elevated blood pressure, which was comparable to that of wild-type mice following DOCA/salt treatment, but dramatically ameliorated renal injury and TIF. In NRK-52E cells, we demonstrated that knockdown of GPR97 suppressed the activation of TGF-ß signaling by disturbing small GTPase RhoA-mediated cytoskeletal reorganization, thus inhibiting clathrin-mediated endocytosis of TGF-ß receptors and subsequent Smad activation. Collectively, this study demonstrates that GPR97 contributes to hypertension-associated TIF at least in part by facilitating TGF-ß signaling, suggesting that GPR97 is a pivotal intrarenal factor for TIF progression under hypertensive conditions, and therapeutic strategies targeting GPR97 may improve the outcomes of patients with HTN.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão Renal , Hipertensão , Camundongos , Animais , Acetato de Desoxicorticosterona/efeitos adversos , Rim/patologia , Hipertensão Renal/tratamento farmacológico , Hipertensão Renal/metabolismo , Hipertensão Renal/patologia , Hipertensão/tratamento farmacológico , Fator de Crescimento Transformador beta/metabolismo , Fibrose
16.
Front Pharmacol ; 13: 1041671, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36457713

RESUMO

Hepatitis is a complex multifactorial pathological disorder, which can eventually lead to liver failure and even potentially be life threatening. Paeoniflorin-6'-O-benzene sulfonate (CP-25) has proven to have critical anti-inflammatory effects in arthritis. However, the effects of CP-25 in the pathogenesis of hepatitis remains unclear. In this experiment, mice were intragastrically administered with CP-25 (25, 50 and 100 mg/kg), and then ConA (25 mg/kg) was intravenous injected to establish hepatitis model in vivo. CP-25 administration attenuated liver damage and decreased ALT and AST activities in mice with hepatitis. Besides, CP-25 modulated immune responses including down-regulated the proportions of activated CD4+, activated CD8+ T cells, and ratio of Th1/Th2 in ConA-injected mice. Furthermore, ConA-mediated production of reactive oxygen species (ROS), release of inflammatory cytokines including IFN-γ, TNF-α, activation of MAPK pathways and nuclear translocation of nuclear factor-kappaB (NF-κB) were significantly decreased in CP-25 administrated mice. In ConA-stimulated RAW264.7 cells, CP-25 suppressed inflammatory cytokines secretion and reduced ROS level, which were consistent with animal experiments. Otherwise, the data showed that CP-25 restrained phosphorylation of ERK, JNK and p38 MAPK pathways influenced by ROS, accompanied with inhibiting NF-κB nuclear translocation. In conclusion, our findings indicated that CP-25 protected against ConA-induced hepatitis may through modulating immune responses and attenuating ROS-mediated inflammation via the MAPK/NF-κB signaling pathway.

17.
Chemosphere ; 308(Pt 1): 136242, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36055589

RESUMO

The toxicity of triphenyl phosphate (TPhP) to aquatic organisms in surface waters has been demonstrated; However, an understanding of toxicity profiles of TPhP in amphibians is limited. Therefore, the adverse effects and threshold concentrations of TPhP on metamorphosis, growth, locomotion, and hepatic antioxidants of Gosner stage 25 Polypedates megacephalus tadpoles under long-term (35 d) exposure to six TPhP concentrations until complete metamorphosis were assessed. Additionally, the overall effect of using integrated multiple biomarkers were determined to demonstrate the potential ecological risks of waterborne TPhP at environmentally relevant concentrations in amphibian tadpoles. With increasing TPhP concentrations, physical parameters (snout-vent length, body mass, condition factor, and hepatic somatic index), jumping distance, hepatic catalase, and superoxide dismutase activities decreased, whereas metamorphosis time and malondialdehyde content increased. The threshold concentration of TPhP that affected the tadpole biomarker, except for metamorphosis rate and jumping distance, was 50-400 µg/L. Furthermore, the standardized scores of the examined integrated biomarkers in the six TPhP concentrations were visualized using radar plots and calculated as the integrated biomarker responses (IBRs). The varying TPhP concentrations had different scores in the radar plots, and the threshold for affecting the IBR value was 10 µg/L, which was close to the TPhP concentration in surface waters. Additionally, IBR values were strongly positively correlated with the TPhP concentrations. These findings indicate that environmentally relevant exposure to waterborne TPhP can pose an ecological risk to amphibian tadpoles. This study can serve as a reference and assist in the formulation of relevant policies and strategies to control TPhP pollution in water bodies.


Assuntos
Antioxidantes , Biomarcadores Ambientais , Animais , Catalase , Larva , Malondialdeído , Organofosfatos/toxicidade , Superóxido Dismutase , Água
18.
Biomaterials ; 288: 121730, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35995622

RESUMO

Transforming growth factor ß (TGF-ß) is a well-known key mediator for the progression and metastasis of lung carcinoma. However, cost-effective anti-TGF-ß therapeutics for lung cancer remain to be explored. Specifically, the low efficacy in drug delivery greatly limits the clinical application of small molecular inhibitors of TGF-ß. In the present study, specific inhibitor of Smad3 (SIS3) is developed into a self-carried nanodrug (SCND-SIS3) using the reprecipitation method, which largely improves its solubility and bioavailability while reduces its nephrotoxicity. Compared to unmodified-SIS3, SCND-SIS3 demonstrates better anti-cancer effects through inducing tumor cell apoptosis, inhibiting angiogenesis, and boosting NK cell-mediated immune responses in syngeneic Lewis Lung Cancer (LLC) mouse model. Better still, it could achieve comparable anti-cancer effect with just one-fifth the dose of unmodified-SIS3. Mechanistically, RNA-sequencing analysis and cytokine array results unveil a TGF-ß/Smad3-dependent immunoregulatory landscape in NK cells. In particular, SCND-SIS3 promotes NK cell cytotoxicity by ameliorating Smad3-mediated transcriptional inhibition of Ndrg1. Furthermore, improved NK cell cytotoxicity by SCND-SIS3 is associated with higher expression of activation receptor Nkp46, and suppressed levels of Trib3 and TSP1 as compared with unmodified-SIS3. Taken together, SCND-SIS3 possesses superior anti-cancer effects with enhanced bioavailability and biocompatibility, therefore representing as a novel therapeutic strategy for lung carcinoma with promising clinical potential.


Assuntos
Carcinoma , Neoplasias Pulmonares , Nanopartículas , Animais , Carcinoma/tratamento farmacológico , Linhagem Celular Tumoral , Isoquinolinas/farmacologia , Isoquinolinas/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Nanopartículas/uso terapêutico , Piridinas/farmacologia , Pirróis/uso terapêutico , Transdução de Sinais , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo
19.
JCI Insight ; 7(14)2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35708906

RESUMO

Although macrophages are undoubtedly attractive therapeutic targets for acute kidney injury (AKI) because of their critical roles in renal inflammation and repair, the underlying mechanisms of macrophage phenotype switching and efferocytosis in the regulation of inflammatory responses during AKI are still largely unclear. The present study elucidated the role of junctional adhesion molecule-like protein (JAML) in the pathogenesis of AKI. We found that JAML was significantly upregulated in kidneys from 2 different murine AKI models including renal ischemia/reperfusion injury (IRI) and cisplatin-induced AKI. By generation of bone marrow chimeric mice, macrophage-specific and tubular cell-specific Jaml conditional knockout mice, we demonstrated JAML promoted AKI mainly via a macrophage-dependent mechanism and found that JAML-mediated macrophage phenotype polarization and efferocytosis is one of the critical signal transduction pathways linking inflammatory responses to AKI. Mechanistically, the effects of JAML on the regulation of macrophages were, at least in part, associated with a macrophage-inducible C-type lectin-dependent mechanism. Collectively, our studies explore for the first time to our knowledge new biological functions of JAML in macrophages and conclude that JAML is an important mediator and biomarker of AKI. Pharmacological targeting of JAML-mediated signaling pathways at multiple levels may provide a novel therapeutic strategy for patients with AKI.


Assuntos
Injúria Renal Aguda , Injúria Renal Aguda/patologia , Animais , Moléculas de Adesão Celular , Moléculas de Adesão Juncional/metabolismo , Rim/patologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
20.
Acta Pharmacol Sin ; 43(5): 1251-1263, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34417577

RESUMO

Transcriptional factor EB (TFEB), a master regulator of autophagy and lysosomal biogenesis, is generally regarded as a pro-survival factor. Here, we identify that besides its effect on autophagy induction, TFEB exerts a pro-apoptotic effect in response to the cyclopentenone prostaglandin 15-deoxy-∆-12,14-prostaglandin J2 (15d-PGJ2). Specifically, 15d-PGJ2 promotes TFEB translocation from the cytoplasm into the nucleus to induce autophagy and lysosome biogenesis via reactive oxygen species (ROS) production rather than mTORC1 inactivation. Surprisingly, TFEB promotes rather than inhibits apoptosis in response to 15d-PGJ2. Mechanistically, ROS-mediated TFEB translocation into the nucleus transcriptionally upregulates the expression of ATF4, which is required for apoptosis elicited by 15d-PGJ2. Additionally, inhibition of TFEB activation by ROS scavenger N-acetyl cysteine or inhibition of protein synthesis by cycloheximide effectively compromises ATF4 upregulation and apoptosis in response to 15d-PGJ2. Collectively, these results indicate that ROS-induced TFEB activation exerts a novel role in promoting apoptosis besides its role in regulating autophagy in response to 15d-PGJ2. This work not only evidences how TFEB is activated by 15d-PGJ2, but also unveils a previously unexplored role of ROS-dependent activation of TFEB in modulating cell apoptosis in response to 15d-PGJ2.


Assuntos
Prostaglandina D2 , Prostaglandinas , Apoptose , Autofagia , Ciclopentanos , Prostaglandina D2/análogos & derivados , Prostaglandina D2/farmacologia , Prostaglandinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA