Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Front Med ; 17(6): 1170-1185, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37747585

RESUMO

OX40 is a costimulatory receptor that is expressed primarily on activated CD4+, CD8+, and regulatory T cells. The ligation of OX40 to its sole ligand OX40L potentiates T cell expansion, differentiation, and activation and also promotes dendritic cells to mature to enhance their cytokine production. Therefore, the use of agonistic anti-OX40 antibodies for cancer immunotherapy has gained great interest. However, most of the agonistic anti-OX40 antibodies in the clinic are OX40L-competitive and show limited efficacy. Here, we discovered that BGB-A445, a non-ligand-competitive agonistic anti-OX40 antibody currently under clinical investigation, induced optimal T cell activation without impairing dendritic cell function. In addition, BGB-A445 dose-dependently and significantly depleted regulatory T cells in vitro and in vivo via antibody-dependent cellular cytotoxicity. In the MC38 syngeneic model established in humanized OX40 knock-in mice, BGB-A445 demonstrated robust and dose-dependent antitumor efficacy, whereas the ligand-competitive anti-OX40 antibody showed antitumor efficacy characterized by a hook effect. Furthermore, BGB-A445 demonstrated a strong combination antitumor effect with an anti-PD-1 antibody. Taken together, our findings show that BGB-A445, which does not block OX40-OX40L interaction in contrast to clinical-stage anti-OX40 antibodies, shows superior immune-stimulating effects and antitumor efficacy and thus warrants further clinical investigation.


Assuntos
Antineoplásicos , Receptores do Fator de Necrose Tumoral , Camundongos , Animais , Receptores do Fator de Necrose Tumoral/fisiologia , Receptores OX40 , Glicoproteínas de Membrana , Ligantes , Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia
2.
Cancer Immunol Immunother ; 67(7): 1079-1090, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29687231

RESUMO

Antibodies targeting PD-1 have been demonstrated durable anti-cancer activity in certain cancer types. However, the anti-PD-1 antibodies are less or not efficacious in many situations, which might be attributed to co-expression of multiple inhibitory receptors or presence of immunosuppressive cells in the tumor microenvironment. Most of the anti-PD-1 antibodies used in clinical studies are of IgG4 isotype with the S228P mutation (IgG4S228P). The functional impact by the interaction of anti-PD-1 IgG4S228P antibody with Fc gamma receptors (FcγRs) is poorly understood. To assess the effects, we generated a pair of anti-PD-1 antibodies: BGB-A317/IgG4S228P and BGB-A317/IgG4-variant (abbreviated as BGB-A317), with the same variable regions but two different IgG4 Fc-hinge sequences. There was no significant difference between these two antibodies in binding to PD-1. However, BGB-A317/IgG4S228P binds to human FcγRI with high affinity and mediates crosslinking between PD-1 and FcγRI. In contrast, BGB-A317 does neither. Further cell-based assays showed that such crosslinking could reverse the function of an anti-PD-1 antibody from blocking to activating. More importantly, the crosslinking induces FcγRI+ macrophages to phagocytose PD-1+ T cells. In a mouse model transplanted with allogeneic human cancer cells and PBMCs, BGB-A317 showed significant tumor growth inhibition, whereas BGB-A317/IgG4S228P had no such inhibition. Immunohistochemistry study revealed an inverse correlation between FcγRI+ murine macrophage infiltration and the density of CD8+PD-1+ human T cells within tumors in the BGB-A317/IgG4S228P-treated group. These evidences suggested that FcγRI+ binding and crosslinking had negative impact on the anti-PD-1 antibody-mediated anti-cancer activity.


Assuntos
Anticorpos Monoclonais/farmacologia , Carcinoma de Células Escamosas/imunologia , Imunoglobulina G/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptores de IgG/metabolismo , Neoplasias Cutâneas/imunologia , Animais , Apoptose , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Proliferação de Células , Humanos , Imunoglobulina G/efeitos dos fármacos , Imunoglobulina G/metabolismo , Ativação Linfocitária , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Receptor de Morte Celular Programada 1/imunologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Células Tumorais Cultivadas , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
3.
PLoS Pathog ; 13(5): e1006357, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28520792

RESUMO

MyD88-mediated signaling downstream of Toll-like receptors and the IL-1 receptor family is critically involved in the induction of protective host responses upon infections. Although it is known that MyD88-deficient mice are highly susceptible to a wide range of bacterial infections, the cell type-specific contribution of MyD88 in protecting the host against intestinal bacterial infection is only poorly understood. In order to investigate the importance of MyD88 in specific immune and nonimmune cell types during intestinal infection, we employed a novel murine knock-in model for MyD88 that enables the cell type-specific reactivation of functional MyD88 expression in otherwise MyD88-deficient mice. We report here that functional MyD88 signaling in CD11c+ cells was sufficient to activate intestinal dendritic cells (DC) and to induce the early group 3 innate lymphoid cell (ILC3) response as well as the development of colonic Th17/Th1 cells in response to infection with the intestinal pathogen C. rodentium. In contrast, restricting MyD88 signaling to several other cell types, including macrophages (MO), T cells or ILC3 did not induce efficient intestinal immune responses upon infection. However, we observed that the functional expression of MyD88 in intestinal epithelial cells (IEC) also partially protected the mice during intestinal infection, which was associated with enhanced epithelial barrier integrity and increased expression of the antimicrobial peptide RegIIIγ and the acute phase protein SAA1 by epithelial cells. Together, our data suggest that MyD88 signaling in DC and IEC is both essential and sufficient to induce a full spectrum of host responses upon intestinal infection with C. rodentium.


Assuntos
Citrobacter rodentium/imunologia , Infecções por Enterobacteriaceae/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais , Animais , Colo/imunologia , Colo/microbiologia , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/patologia , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Técnicas de Introdução de Genes , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/genética , Receptores de Interleucina-1/metabolismo , Células Th1/imunologia , Células Th1/microbiologia , Células Th17/imunologia , Células Th17/microbiologia , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
4.
Prog Mol Biol Transl Sci ; 136: 99-129, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26615094

RESUMO

T helper 17 (Th17) cells play an essential role in the clearance of extracellular pathogenic bacteria and fungi. However, this subset is critically involved in the pathology of many autoimmune diseases, e.g., psoriasis, multiple sclerosis, allergy, rheumatoid arthritis, and inflammatory bowel diseases in humans. Therefore, Th17 responses need to be tightly regulated in vivo to mediate effective host defenses against pathogens without causing excessive host tissue damage. Foxp3(+) regulatory T (Treg) cells play an important role in maintaining peripheral tolerance to self-antigens and in counteracting the inflammatory activity of effector T helper cell subsets. Although Th17 and Treg cells represent two CD4(+) T cell subsets with opposing principal functions, these cell types are functionally connected. In this review, we will first give an overview on the biology of Th17 cells and describe their development and in vivo function, followed by an account on the special developmental relationship between Th17 and Treg cells. We will describe the identification of Treg/Th17 intermediates and consider their lineage stability and function in vivo. Finally, we will discuss how Treg cells may regulate the Th17 cell response in the context of infection and inflammation, and elude on findings demonstrating that Treg cells can also have a prominent function in promoting the differentiation of Th17 cells.


Assuntos
Linfócitos T Reguladores/citologia , Células Th17/citologia , Animais , Humanos , Modelos Imunológicos
5.
J Immunol ; 194(6): 2888-98, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25694610

RESUMO

IL-17-producing Th17 cells mediate immune responses against a variety of fungal and bacterial infections. Signaling via NF-κB has been linked to the development and maintenance of Th17 cells. We analyzed the role of the unusual inhibitor of NF-κB, IκBNS, in the proliferation and effector cytokine production of murine Th17 cells. Our study demonstrates that nuclear IκBNS is crucial for murine Th17 cell generation. IκBNS is highly expressed in Th17 cells; in the absence of IκBNS, the frequencies of IL-17A-producing cells are drastically reduced. This was measured in vitro under Th17-polarizing conditions and confirmed in two colitis models. Mechanistically, murine IκBNS (-/-) Th17 cells were less proliferative and expressed markedly reduced levels of IL-2, IL-10, MIP-1α, and GM-CSF. Citrobacter rodentium was used as a Th17-inducing infection model, in which IκBNS (-/-) mice displayed an increased bacterial burden and diminished tissue damage. These results demonstrate the important function of Th17 cells in pathogen clearance, as well as in inflammation-associated pathology. We identified IκBNS to be crucial for the generation and function of murine Th17 cells upon inflammation and infection. Our findings may have implications for the therapy of autoimmune conditions, such as inflammatory bowel disease, and for the treatment of gut-tropic infections.


Assuntos
Diferenciação Celular/imunologia , Citrobacter rodentium/imunologia , Colite/imunologia , Infecções por Enterobacteriaceae/imunologia , Proteínas I-kappa B/imunologia , Células Th17/imunologia , Animais , Western Blotting , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular/genética , Proliferação de Células/genética , Citrobacter rodentium/fisiologia , Colite/genética , Colite/metabolismo , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Infecções por Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/microbiologia , Citometria de Fluxo , Expressão Gênica/imunologia , Interações Hospedeiro-Patógeno/imunologia , Proteínas I-kappa B/deficiência , Proteínas I-kappa B/genética , Camundongos da Linhagem 129 , Camundongos Knockout , NF-kappa B/imunologia , NF-kappa B/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Th17/metabolismo
6.
J Pharmacol Sci ; 121(4): 272-81, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23603895

RESUMO

Genipin, an active constituent of Gardenia fruit, has been reported to show an anti-tumor effect in several cancer cell systems. Here, we demonstrate how genipin exhibits a strong apoptotic cell death effect in human non-small-cell lung cancer H1299 cells. Genipin-mediated decrease in cell viability was observed through apoptosis as demonstrated by induction of a sub-G1 peak through flow cytometry, DNA fragmentation measured by TUNEL assay, and cleavage of poly ADP-ribose-polymerase. During genipin-induced apoptosis, the mitochondrial execution pathway was activated by caspase-9 and -3 activation as examined by a kinetic study, cytochrome c release, and a dose-dependent increase in Bax/Bcl-2 ratio. A search for the downstream pathway reveals that genipin-induced apoptosis was mediated by an increase in phosphorylated p38MAPK expression, which further activated downstream signaling by phosphorylating ATF-2. SB203580, a p38MAPK inhibitor, markedly blocked the formation of TUNEL-positive apoptotic cells in genipin-treated cells. Besides, the interference of p38MAPK inhibited Bax expression and cytochrome c release. Altogether, our observations imply that genipin causes increased levels of Bax in response to p38MAPK signaling, which results in the initiation of mitochondrial death cascade, and therefore it holds promise as a potential chemotherapeutic agent for the treatment of H1299 cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/ultraestrutura , Iridoides/farmacologia , Mitocôndrias/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Citocromos c/metabolismo , Relação Dose-Resposta a Droga , Humanos , Terapia de Alvo Molecular , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais/fisiologia , Células Tumorais Cultivadas , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA